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An accurate and efficient forward modeling is the foundation of full-waveform inversion (FWI). In elastic wave
modeling, one of the key problems is how to deal with the free-surface boundary condition appropriately. For
the representation of the free-surface boundary condition, conventional displacement-based approaches and
staggered-grid approaches are often used in time-domain. In frequency-domain, considering the saving of stor-
age and CPU time, we integrate the idea of physical parameter-modified staggered-grid approach in time-domain
with an elastic optimal mixed-grid modeling scheme to design an improved parameter-modified free-surface ex-
pression. Accuracy analysis shows that an elastic optimal mixed-grid modeling scheme using the parameter-
modified free-surface expression can provide more accurate solutions with only 4 grid points per smallest
shear wavelength than conventional displacement-based approaches and is stable for most Poisson ratios. Be-
sides, it also yields smaller condition number of the resulting impedance matrix than conventional
displacement-based approaches in laterally varying complex media. These advantages reveal great potential of
this free-surface expression in big-data practical application.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Full-waveform inversion (FWI) is an attracting method to offer the
possibility of revealing underground detailed structure and reservoir
properties in oil and gas exploration. It is a data-fitting process based
on full-waveform modeling to extract physical properties from seismic
data (Operto and Virieux, 2009). The elastic wave equation is an ap-
proximate modeling tool to simulate the propagation of seismic waves
in complex media. Modeling in frequency-domain has the advantages
of high efficiency for multi-shot computation using a direct solver, sin-
gle frequency manipulation for inversion, and flexible simulation of at-
tenuation effect (Pratt, 1990; Jo et al., 1996).

A major obstacle in the frequency-domain modeling is the stor-
age requirement and solving an extremely large matrix equation.
Minimizing the size of the matrix will be an effective way to over-
come this problem. Based on a rotated operator, Jo et al. (1996) de-
signed an optimal mixed-grid operator for 2-D scalar wave
modeling. It reduced the number of grid points per smallest
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wavelength to approximately 4, leading to a significant reduction
of matrix size at the cost of increasing the numerical bandwidth
of matrix. Stekl and Pratt (1998) extended this method to 2-D elas-
tic wave modeling and reduced the number of grid points per
smallest shear wavelength to approximately 4 as well. The differ-
ence is that it uses the same grid points in the numerical computa-
tion as an original second-order difference scheme (Kelly et al.,
1976), thus extra numerical bandwidth is not needed. However,
for elastic modeling, the elastic free-surface boundary condition
is a key issue requiring special considerations. In time-domain,
there are two kinds of method to deal with the free-surface bound-
ary condition proposed in the past few decades. One is the
displacement-based approach, which uses the approximate spatial
derivative of the displacement to express the free-surface bound-
ary condition, including the centered explicit approximation
(Alterman and Karal, 1968), the one-side explicit approximation
(Alterman and Rotenberg, 1969; Kelly et al., 1976), the centered
implicit approximation (Vidale and Clayton, 1986), the composed
approximation and some of its revisions (Ilan et al., 1975; Ilan
and Loewenthal, 1976; Lan and Zhang, 2011). For frequency-
domain implementation, composed approximations are compli-
cated and inapplicable, because they use x and t derivatives to re-
place the z derivatives on the free-surface, involving more
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Fig. 1. Staggered-grid geometries for the free-surface. (a) Cartesian system staggered-grid
scheme. (b) Rotated system staggered-grid scheme.

calculations than the others. The other is the staggered-grid ap-
proach based on the Virieux's explicit numerical scheme of
velocity-stress elastodynamics equation system (Virieux, 1986).
For instance, vacuum formalism (Zahradnik et al., 1993) sets the
Lamé parameters above the free-surface to zero and the density
close to zero to implicitly approximate the free-surface. The stress
image method (Levander, 1988; Graves, 1996; Gottschamer and

Olsen, 2001) images stress fields across the free-surface as the
odd functions. The physical parameter-modified methods, which
describe the stress-free by a modification of physical parameters
on the free-surface without extra processing above the free-
surface, are simple and easy to apply to frequency-domain model-
ing. Mittet (2002) used a transversely isotropic approach to the
free-surface. Xu et al. (2007) pointed out that Mittet's scheme vio-
lates the basic physical principle, which addresses dispersion in
terms of their numerical examples (Bohlen and Saenger, 2006; Xu
et al., 2007). They implemented the free-surface condition by an
acoustic-elastic boundary approach.

Our work is based on the 2-D elastic wave equation in
frequency-domain described by displacement and stress. Two nu-
merical operators of Stekl and Pratt (1998), a differencing operator
in a rotated coordinate system and a lumped mass term, are used to
discrete the displacement-stress equation system in the same way
as the elastic optimal mixed-grid modeling scheme. For the grid
points near the free-surface, a parameter-modified staggered-grid
method is used in both Cartesian and rotated coordinate system
difference schemes, respectively, which gives an improved
parameter-modified free-surface expression. The numerical exam-
ples show that: (1) for Lamb's problem, an elastic optimal mixed-
grid modeling scheme using the parameter-modified free-surface
expression can provide more accurate solutions with only 4 grid
points per smallest shear wavelength than conventional
displacement-based approaches and is stable for most Poisson ra-
tios; (2) for laterally varying complex media modeling, it also
yields better solution and smaller condition number than conven-
tional displacement-based approaches.

2. Elastic modeling for free-surface

Elastic modeling in frequency-domain is often implemented on the
displacement-based elastic wave equation,
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where o is the angular frequency, fand g are the horizontal and vertical
body forces, u and v are the horizontal and vertical components of Fou-
rier transformed displacements, respectively, A and p are the Lamé pa-
rameters, and p is the density. Stekl and Pratt (1998) introduced two
separate coordinate systems, one rotated 45° with respect to the
other, and a lumped mass term to present an elastic optimal mixed-
grid modeling scheme for Eq. (1). It reduces the number of grid points
per smallest shear wavelength to approximately 4 and works well for
the interior part of the model.
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Fig. 2. Acquisition schematic of the homogenous model.
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