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2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular
mesh that readily accommodates complex structures such as topography and dipping layers and so on. We im-
plement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is per-
formed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error
estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorpo-
rated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical ac-
curacy considerably according to model calculations. We have verified the adaptive finite element algorithm
using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary
conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less
than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D aniso-
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tropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.
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1. Introduction

It is commonly known that the layered sedimentary sequences can
exhibit macroscopic electrical anisotropy with a symmetry axis perpen-
dicular to the bed plane, and fracture zones often show significantly ori-
entational preferences giving rise to a more macroscopic electrical
anisotropy (Keller and Frischknecht, 1996; Bhattacharya and Patra,
1968; Li and Spitzer, 2005). Thus, ignoring electrical anisotropy when
dealing with the field data acquired in areas of layered sedimentary
rocks and fractured zones may lead to a distorted image of conductivity
structures, even misinterpretation (Asten, 1974; Li and Dai, 2011).

The electrical potential due to a point source in a homogeneous an-
isotropic medium can be obtained by transforming Laplace's equation
for a homogeneous isotropic medium into Laplace's equation for a ho-
mogeneous anisotropic medium by stretching and rotating a coordinate
system (Bhattacharya and Patra, 1968; Habberjam, 1979).The quasi-
analytical solution in arbitrarily anisotropic layered media and the ef-
fects of anisotropy for a layered structure upon the direct current resis-
tivity was investigated by Wait (1990), Li and Uren (1997) and Pervago
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et al. (2006). For a general anisotropic earth, 3-D direct current resistiv-
ity finite element modeling algorithms were developed by using struc-
tured grids (Pain et al., 2003; Li and Spitzer, 2005), unstructured grids
(Wang et al., 2013) and the Gaussian quadrature grids (Zhou et al.,
2009). Verner and Pek (1998) presented a 2-D finite difference (FD)
method for numerical modeling of DC resistivity in anisotropic struc-
tures, in which the partial differential equations are discretized on a
rectangular cell and the Dirichlet boundary condition is applied. Bibby
(1978) presented a finite element code for axially symmetric bodies,
which allows for some simple cases of anisotropy. Zhou et al. (2009) re-
ported a direct current resistivity modeling method in dipping aniso-
tropic media using a Gaussian quadrature grid.

We sought to develop a new numerical method that can handle com-
plex models including rough topography and simulate geoelectrical re-
sponses in arbitrarily anisotropic structures. Furthermore, we wanted to
improve the numerical precision with the incorporation of the mixed
boundary condition and the use of the adaptive mesh refinement scheme.

In this paper, we develop a new finite element resistivity modeling
method in a general 2-D anisotropic conductivity structure. First, we de-
scribe the numerical realization of the adaptive finite element algorithm
in details. Then, we verify the finite element algorithm and code using
an anisotropic two-layered model. Finally, we use 2-D anisotropic
models to demonstrate the effects of anisotropy upon the direct current
resistivity.
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2. Methods
2.1. Governing equations and boundary conditions

Consider a 2-D conductivity model with general anisotropy and let x
be the structural strike direction. The coordinate system is right-handed
with the z-axis pointing positive downwards. In the anisotropic earth,
the current density j and the electric field E are in general no longer
parallel each other, which is expressed by the generalized Ohm's law

j=gE, (M
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whereg = (ny Oy Oy, > is the conductivity tensor. In the earth, it
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is symmetric and positive definite.

The conductivity tensor o can be rotated into its principal axes
(x',y',z") and described by its three principal conductivities 0y, 0y,0
and the corresponding three Euler angles i (anisotropy strike), oy (an-
isotropy dip), ¢y (anisotropy slant). The transformation is carried out by
successively applying three rotation matrices to the conductivity tensor
corresponding to the Euler angles: first around the z-axis by s, then
around the new x-axis by oy, and finally around the new z-axis by «;.
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where R,(os), R,(ag) and R,(oy) are the rotation matrices.

Assume that the steady electric field is generated by a current source
I, which is located at a point (x4,Y4,24) in the conductive earth, then, we
have

V- §(%,.2) = 16(x—xq) (¥, )5(2—2q) 2)

where 6 is the Dirac delta function and V = (£, aa_ya%)
The electrical field E(x,y,z) can be represented by the negative
gradient of the electric potential v(x,y,z)

E(x,y,2) = —Vv(x,y,2). (3)
Substituting Eqs. (1) and (3) into Eq. (2), yields
V. (ng(x,y,z)) = —Iﬁ(x—xq)6<y—yq>6(z—zq). (4)

Although the conductivity distribution is 2-D, Eq. (4) is a 3-D
differential equation. It can be transferred into a 2-D equation by
using Fourier transformation with respect to the strike direction x

o
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resulting in the following partial differential equation
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with v, = (2. 2), 7 = (9w 9y b 5 Vn, + 0, Vn,, where k is
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the wave number, and ny, and n, are the unit vectors along the y and z
axis, respectively.

In order to solve Eq. (6), the boundary conditions must be applied.
On the interface between two conductivity bodies with different con-
ductivity tensor denoted by I}, the electric potential v must be

continuous, thus we have

Vi (X,y,z) = V2(X7y,z) on I (7)

in the space domain and

Vi (k,y,Z) = Vz(kvyvz) on I (8)

in the wave number domain.
With the use of Eqs. (5) and (3), the generalized Ohm's law (Eq. (1))
in the space domain can be transformed into
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in the wave number domain, where ny is the unit vector along the x axis.

Since there is no current flow through the air-earth interface
denoted by Iy and the normal component of the current density is
continuous at the interface, thus we have

J(k,y,z) - n=0 on s (10)

where n is the unit normal vector of the boundary interface.
Substituting Eq. (9) into (10), yields

. ov
lkp<n+2%:0 on Is. (11)

On the other domain boundaries denoted by I, the mixed boundary
conditions are applied. Dey and Morrison (1979) proposed mixed bound-
ary conditions for an isotropic medium. In an anisotropic 3-D case, such
mixed boundary condition was derived by Li and Spitzer (2005).

In a generally anisotropic 2-D case, the mixed boundary conditions
in the wave number domain can also be derived (see Appendix A for
details).
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(k\/%) are the modified Bessel functions of the second kind of order 0
and 1, respectively.

2.2. Finite element approximation

The method of weighted residuals is used to derive the FE approxi-
mation (Zienkiewicz, 1977; Li and Pek, 2008). Eq. (6) is multiplied by
an arbitrary variation of the transformed electrical potential 6V and in-
tegrated over the model area Q, and, subsequently, modified by using
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