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In full waveform inversion, an appropriate preconditioner for scaling the gradient improves the inversion results
and accelerates the convergence speed. TheNewton-basedmethod uses the Hessian to scale the gradient and en-
sures a correctly inverted image with good convergence. However, calculating the full Hessian or approximated
Hessian and obtaining their inverse matrices require extensive computation, which has remained an obstacle to
the application of Newton-basedmethods to full waveform inversion.Many attempts have beenmade to reduce
the computational cost of obtaining the Hessian and its inverse; among these alternatives, the pseudo-Hessian
method has been widely used. The use of the pseudo-Hessian reduces the computational cost by regarding the
zero-lag correlation of the impulse response as a unit matrix, but the pseudo-Hessian cannot properly scale
the deep portion of a model. Therefore, we proposed a weighted pseudo-Hessian which can overcome the limi-
tations of the conventional pseudo-Hessian. The weighted pseudo-Hessian was generated by combining a
weighting matrix with the conventional pseudo-Hessian. The weighting matrix is an amplitude field and helps
the pseudo-Hessian to scale the gradient properly. Therefore, the weighted pseudo-Hessian can effectively
scale the gradient from the shallow part to the deep part of the model with great balance. Calculating the
weighting function requiredminimal computation, such that the computational cost of generating the weighted
pseudo-Hessian was nearly the same as the computational cost needed to calculate the conventional pseudo-
Hessian. To verify the proposed algorithm,Marmousi-2 data were used for the synthetic test. The results indicate
that theweighted pseudo-Hessian can effectively scale the gradient from the shallow to deep portions of amodel.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Accurately measuring the properties of subsurface materials is
important for imaging subsurface geologic structures. Several methods
may be used to invert the properties of subsurface materials from
seismic data, such as travel-time tomography, migration velocity
analysis and full waveform inversion (FWI). In the past thirty years,
many geophysicists have worked to improve FWI (Lailly, 1983;
Tarantola, 1984; Mora, 1987; Pratt et al., 1998; Shin and Min, 2006).
To evaluate the properties of subsurface materials, FWI updates the
model parameters by using an objective function that minimizes the
residuals between the observed and modeled data. Therefore, the
development of an effective method to minimize the residuals in the
objective function has been an important area of research in FWI.

Many optimization methods, such as the steepest-descent method
and Newton-based methods, have been used to minimize the misfits
between observed andmodeled data. In thesemethods, a certainmatrix
is used as a preconditioner to accelerate the convergence and improve

the FWI results (Pratt et al., 1998; Brossier et al., 2009). Pratt et al.
(1998) performed frequency-domain FWI by using the full Newton
method and Gauss–Newton method. In the full Newton method, the
gradient direction is scaled by using the exact Hessian, which consists
of two parts: the first part is an approximated Hessian, and the second
part is the cross-correlation between the 2nd-order partial derivatives
of the source-side wavefield and the data residuals. The second term
of the exact Hessian is difficult to calculate and has relatively small
values. Therefore, the last term is generally dropped (Tarantola, 2004),
and the resulting formula for scaling the gradient with the approximat-
ed Hessian is known as the Gauss–Newton method.

Although both the full Newton and Gauss–Newton optimization
methods effectively reduce the misfits in the objective function while
updating the model parameters, the Gauss–Newton method is more
practical for use in FWI (Habashy and Abubakar, 2004; Sheen et al.,
2006) because applying the approximated Hessian reduces the
computational cost, although extensive computation is still required.
Therefore, some efforts have been made to reduce the computational
cost of obtaining the approximated Hessian and its inverse matrix.

Shin et al. (2001b) suggested an efficient method for calculating the
Jacobian matrix that involved the use of a reciprocity theorem. The
authors effectively calculated the Jacobian matrix by multiplying the
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virtual source with Green's function. Golub and van Loan (1996), Hu
et al. (2011) and Bae et al. (2012) applied the conjugate gradient
least-square (CGLS) algorithm to the Gauss–Newton method. The
CGLS algorithm does not require the explicit calculation of the approxi-
matedHessian. Thesemethods reduce the computational cost that is re-
quired to obtain the approximated Hessian, but extensive computation
is still required, and adding a stabilizing constant (Marquardt, 1963) to
the CGLS algorithm is difficult. The problem of high computational cost
is exacerbated when we apply the Gauss–Newton algorithm to elastic
FWI because of the considerably larger Hessian compared to the
acoustic case. Therefore, the high computational cost remains an obsta-
cle for the practical application of FWI.

Quasi-Newtonmethods such as L-BFGS (Limited-memory Broyden–
Fletcher–Goldfarb–Shanno) are also widely used (Brossier et al., 2009;
Romdhane et al., 2011; Asnaashari et al., 2013) in FWI. L-BFGS estimates
themodel update, which is scaled by the approximatedHessian at every
iteration, by using the model updates and model vectors of the n
most-recent iterations. This method can compute the model update
properly with lessmemory cost. However, this method does not always
guarantee convergence, and using a proper initial estimation of the
approximated Hessian is necessary.

Shin et al. (2001a) suggested a pseudo-Hessian by assuming that the
matrixmultiplication of the impulse response in the approximatedHes-
sian was a unit matrix, and this approach enhanced the amplitude of
later time signals in reverse time migration. Because the pseudo-
Hessian is diagonally dominant, the authors scaled the migration
image by using the diagonal elements of the pseudo-Hessian. Using
this method, the computational cost of calculating the Hessian was
greatly reduced. Tarantola (1984) reported that migration is the first
step of inversion, and Chavent and Plessix (1999) and Shin et al.
(2003) verified that prestack depth-migration is based on the same
algorithm as that used in FWI. Therefore, many FWI studies have scaled
the gradient direction by using diagonal elements of the pseudo-
Hessian (Shin and Min, 2006; Kim et al., 2011). Despite the benefit of
the pseudo-Hessian, it is limited in its ability to successfully image the
deep region of a model because the pseudo-Hessian neglects the zero-
lag correlation of the impulse response of the approximated Hessian,
which describes geometric spreading (Choi et al., 2008). This limitation
becomes severer when the pseudo-Hessian is applied to elastic FWI
because of the complex wave phenomena.

Therefore, Choi et al. (2008) suggested a new pseudo-Hessian that
directly addresses geometric spreading. In this method, geometric
spreading is effectively simulated by introducing amplitude fields to
the diagonal elements of the conventional pseudo-Hessian. The compu-
tational cost of constructing a new pseudo-Hessian is similar to that of
obtaining the conventional pseudo-Hessian because the amplitude
fields are calculated by using a forward modeling procedure. Although
the new pseudo-Hessian can invert deep regions better than the
conventional pseudo-Hessian, the former tends to neglect the shallow
part of the model and focuses too much on the deeper parts of the
model.

In this study, we suggest a weighted pseudo-Hessian to overcome
the limitation of the conventional and newpseudo-Hessian. To calculate
the weighted pseudo-Hessian, we generated an amplitude field which
can help the Hessian to scale the gradient properly and combined the
amplitude field to the conventional pseudo-Hessian. We used several
types of approximation methods to generate the amplitude fields and
showed how the approximations were performed. To provide better
insight into the advantages of the weighted pseudo-Hessian, we
compared the extracted Hessians. Comparing the weighted pseudo-
Hessian to the conventional and new pseudo-Hessian, the weighted
pseudo-Hessian updates the entire model more properly with a similar
computational cost.

We begin by briefly reviewing the theory of frequency-domain FWI,
pseudo-Hessian andnewpseudo-Hessian. A comparisonbetween the ap-
proximated Hessian and pseudo-Hessian follows. Then, we introduce the

construction of a weighted pseudo-Hessian. Finally, we explain the strat-
egies for the multi-parameter FWI and demonstrate the effectiveness of
the weighted pseudo-Hessian by inverting Marmousi-2 synthetic data.

2. Theory

2.1. Frequency-domain full waveform inversion

An objective function that uses the l2 norm in the frequency domain
is as follows:

E ¼ 1
2

u−dð ÞT u−dð Þ�; ð1Þ

where u is the modeled wavefield vector in the frequency domain, d is
the Fourier-transformed observed wavefield vector, T denotes the
transpose and * represents the complex conjugate.

The gradient g of the objective function is given by

g ¼ Re JTr�
h i

; ð2Þ

where J is the partial derivative wavefield matrix and r= [u− d] is the
data misfit vector between themodeled and observed wavefield vectors.
The adjoint state method (Plessix, 2006) allows the efficient calculation
of the gradient instead of the explicit calculation of J. The gradient with
respect to the kth model parametermk is expressed as follows:

gmk
¼ Re vTkS

†r�
h i

; ð3Þ

where vk ¼ − ∂S
∂mk

u, S is the impedance matrix and † indicates the ad-

joint matrix. The model update Δm is obtained by using a second-
order Taylor expansion of the objective function and is expressed as fol-
lows:

HΔm ¼ −g; ð4Þ

where H is the Hessian matrix. Therefore, the model parameters at the
ith iteration are as follows:

mi ¼ mi−1−H−1gi−1: ð5Þ

The inverse Hessian H−1 acts as a preconditioner that compensates
for geometric spreading (Shin et al., 2001a; Plessix and Mulder, 2004)
and addresses the crosstalk between multiple parameters (Operto
et al., 2013). When the proper preconditioner is obtained, we can cor-
rectly update the model parameters. However, the computation of H
and its inverse matrix requires a huge amount of computation, and
many attempts have been made to obtain the proper preconditioner
at a lower computational cost, including the use of CGLS (Golub and
van Loan, 1996; Hu et al., 2011; Bae et al., 2012), quasi-Newton
(Brossier et al., 2009; Romdhane et al., 2011; Asnaashari et al., 2013)
and pseudo-Hessian methods (Shin and Min, 2006; Kim et al., 2011).
In this study, we used and improved a pseudo-Hessian method. As we

Table 1
Symbols for the Hessians.

Symbol Name Description

H Full Hessian

Re½ JT J�� þ Re½ð ∂
∂m1

JTÞr� ð ∂
∂m2

JTÞr�⋯ð ∂
∂mn

JTÞr��
Ha Approximated Hessian Re[JTJ⁎]
Hp Pseudo-Hessian Re[VTV⁎]
Hnew−p New pseudo-Hessian Re[VTAV⁎]
Hw−p Weighted

pseudo-Hessian
Re[VTWV⁎]
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