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We present an iterative joint inversion approach for improving the consistence of estimated P-wave velocity, S-
wave velocity and attenuation factormodels. This type of inversion scheme links two ormore independent inver-
sions using a joint constraint, which is constructed by the cross-gradient function in this paper. The primary ad-
vantages of this joint inversion strategy are: avoiding weighting for different datasets in conventional
simultaneous joint inversion,flexible for incorporating prior information, and relatively easy to code.Wedemon-
strate the algorithmwith two synthetic examples and two field datasets. The inversions for P- and S-wave veloc-
ity are based on ray traveltime tomography. The results of thefirst synthetic example show that the iterative joint
inversion take advantages of both P- and S-wave sensitivity to resolve their ambiguities aswell as improve struc-
tural similarity between P- and S-wave velocity models. In the second synthetic and field examples, joint inver-
sion of P- and S-wave traveltimes results in an improved Vs velocity model that shows better structural
correlation with the Vp model. More importantly, the resultant VP/VS ratio map has fewer artifacts and is better
correlated for use in geological interpretation than the independent inversions. The second field example illus-
trates that the flexible joint inversion algorithm using frequency-shift data gives a structurally improved attenu-
ation factor map constrained by a prior VP tomogram.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to data deficiency and complex characteristic of geological sys-
tem, e.g. multiple fluids in the reservoir, single geophysicalmodelmight
be difficult to characterize the geological target fully. For example, com-
pressional waves are very sensitive to gas-saturated rocks while shear
waves are not. Attenuation is potentially more sensitive than velocity
to the amount of gas in a rock (Winkler and Murphy, 1995). The ratio
of Vp/Vs is more sensitive to changes of fluid type than Vp or Vs sepa-
rately (Dvorkin et al., 1999; Hamada, 2004). It is also believed that at-
tenuation factor is closely related to permeability (Pride et al., 2003).
We can see that different geophysical models tend to reflect comple-
mentary characters of reservoir. It is natural to combine several types
of geophysical data collected over the same reservoir region to reduce
ambiguity in inversion results, leading tomore reliablemodels for reser-
voir characterization.

A type of joint inversion refers to combining several different types
of geophysical datasets in a single inversion algorithm and then simul-
taneously or iteratively solving a least-squares problem (Vozoff and

Jupp, 1975; Haber and Oldenburg, 1997; Julia et al., 2000; Gallardo
and Meju, 2003). Simultaneous joint inversion approaches have been
successfully applied for different geophysical data to provide improved
geophysical models (e.g., Gallardo and Meju, 2004; De Stefano, 2007;
Linde et al., 2008; Doetsch et al., 2010; De Stefano et al., 2011; Gao et
al., 2012; Lelievre et al., 2012). However, coupling two or more datasets
in a single inversion still face some difficulties, especially large-scale
problem: first, the huge coupled Jacobian and/or Hessian matrices for
the different data inversions have to be computed and/or stored for si-
multaneous use (Hu et al., 2009); second, the determination of suitable
relative weighting between different objective functions can be chal-
lenging (Gallardo and Meju, 2007; Moorkamp et al., 2011).

In this paper, we discuss an alternative approach to simultaneous
joint inversion for the tomography problem that is quite similar to the
ones of Hu et al. (2009) and Heincke et al. (2010). The iterative joint in-
version couples independent inversions through iterationswith a cross-
constraint term. At every iteration, we still run an independent inver-
sion byminimizing an objective functionwith the additional cross-con-
straint term. The presented approach overcomes the memory issue and
the determination of relative weighting of different data sets. The cross
constraint could be a direct parameter relation or a structural link. A di-
rect parameter relation for different models based on the empirical or
rock-physics relations (e.g., Carcione et al., 2007) may be limited in
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some specific places. Instead, we implement a structural link—the cross-
gradient function—which measures the structural similarity between
the different models instead of the direct parameter relation (Gallardo
and Meju, 2003; Zhu and Harris, 2011; Um et al., 2014).

Another advantage of the iterative joint inversion algorithmwith the
cross-gradient structural constraint is its flexibility to incorporate prior
models into the independent algorithms. For example, a prior lithologic
map (e.g., from reflection-migrated images) could be applied to con-
strain other parameters in the cross-gradient function. This is easy to
implement as an additional regularization term in an independent in-
versionwithin a single unknown, but it is difficult to use formultiple un-
knowns, whose unknownsmay not be on the same order of magnitude
(e.g., velocity and resistivity).

We begin by presenting a flexible iterative joint inversion frame-
work that allows us to test different geophysical datasets. We then
give an overview of the different parts of the joint inversion framework:
the objective function definition, the cross-gradient function, and the
determination of regularization weights. We test the algorithm with
two synthetic examples for jointly inverting Vp and Vs models. Finally,
we apply the approach to two seismic cross-well field datasets acquired
at the west Texas for reservoir characterization.

2. Methodology

The inverse problem is formulated as an optimization that mini-
mizes an objective functionΦ, which combines ameasure of datamisfit,
Φd, a regularization measure Φm:

minΦ mð Þ ¼ Φd mð Þ þ λΦm mð Þ; ð1Þ

where the model vector m is a spatial function m(x,y,z), and λ is a
regularization parameter, which is used to adjust contributions for
data misfit from the model regularization term and the constraint
function.

The objective functions of the iterative joint inversion of two
datasets with a cross constraint ψcc(m1,m2)are defined as

Φ1 ¼ Φd m1ð Þ þ λ1Φm m1ð Þ þ β1ψcc m1;m2ð Þ;
Φ2 ¼ Φd m2ð Þ þ λ2Φm m2ð Þ þ β2ψcc m1;m2ð Þ; ð2Þ

where m1 and m2 denote two models for two corresponding
datasets. In such an iterative joint inversion, we still run two inversions
separately. In each independent inversion, the cross constraint is func-
tional as a new regularization and includes complementary information
from a jointmodel during iterations. The coefficient β controls the influ-
ence from other models on the solution through the cross constraint.
Through the constraint ψcc(m1,m2), two independent inversions in Eq.
(2) exchange information (e.g., geologic structure) during iterations.

The data misfit Φd and the regularization terms Φm are written as

Φd mið Þ ¼ Wd G mið Þ−dobs
i

� ���� ���
L2
; ð3Þ

Φm mð Þ ¼ 1
2

Wmk k22 ð4Þ

where ‖⋅‖22 represents an L2-norm, and all quantities written in bold
represent vectors. The subscript i refers to the index of multiple models
(dataset), G(m) is the forward functional, dobs is the observed data vec-
tor, andm is the unknown model vector.Wd is the data weighting ma-
trix, which ensure the data by giving appropriate weights in the
inversion (see Eq. (15) in Pidlisecky et al., 2007). The regularization
term W is chosen as the first- and second-order spatial derivatives
(Zhu and Harris, 2015). A finite-difference approximation of the W in
3D results in the sparse matrix

W ¼ axGx þ ayGy þ azGz þ alapL ð5Þ

where ax,ay and az are relatively weights applied to x ,y, and z spatial
components of the discrete gradient (Gx,Gy,Gz) (Pidlisecky et al., 2007),
L is the discretized Laplacian matrix (Aster et al., 2005), and alap is the
weighting value.

For our problem, the cross-gradient function is chosen as the con-
straint functionalψcc=ψcg(m1,m2). The constraint functional is defined
as ψcg(m1,m2)=‖t‖22, where the cross-gradient function t is defined in
Gallardo and Meju (2003):

t x; y; zð Þ ¼ ∇m1 x; y; zð Þ � ∇m2 x; y; zð Þ; ð6Þ

where ∇ is the gradient in the x,y and z directions. The structural
similarity requires t = 0, which means that any spatial changes occur-
ring in both m1 and m2 must point in the same or opposite direction,
or no spatial changes in one of m1 and m2 (Gallardo and Meju, 2004).
The derivatives of the cross-gradient termwith respect to themodel pa-
rameters are given in 2D (Gallardo andMeju, 2004) and 3D (Tryggvason
and Linde, 2006). The Jacobian matrix Jxgis then obtained. Each row of
Jacobian matrix has six nonzero elements of 2Nm (Nm is the model
size) (cf. Gallardo and Meju, 2004, Eq. (9)).

In our synthetic and field examples, we carefully choose λ through
several tests to balancemodel misfit and data misfit in the independent
inversion. When λ is obtained, we use this value for the iterative joint
inversion. We determine the β value by the experienced rule given by
Hu et al. (2009)

β ¼ 10L Φmj j2= N ψccj j2 þ δ2
� �h i

; ð7Þ

whereN=NxNyNz and δ is a small value. L usually ranges 0bLb5 and
depends on which model is superior, i.e., the superior model has rela-
tively small weights. Nx, Ny and Nz are the number of discretized grid
points in the x,y and z directions.

Fig. 1 shows the flowchart of our iterative procedure. The procedure
begins with two input datasets and their corresponding initial models
m0=(m1,m2),which are usually homogenous in our tomography algo-
rithm. In the first iterative, we run two independent inversions (box ‘A’
and ‘B’) for m1

1 and m2
1. The superscript denotes the iteration number.

When we obtained updated models m1
1 and m2

1 from flows ‘A’ and ‘B’

Fig. 1. Flowchart of iterative joint inversion scheme. The boxes ‘A’ and ‘B’ represent the in-
dependent inversions. The box ‘J’ represents the joint constraint term between ‘A’ and ‘B’.
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