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Wemodel the anisotropy of the electrical conductivity of geomaterials based on the micro–macro homogeniza-
tion theory. Thesematerials are considered as randommixtures of solid grains and pores filled by fluids, both are
supposed to have ellipsoidal shapes with their long axes oriented in horizontal direction. The electrical behavior
of suchmaterial is transversely isotropic. The classical Eshelby's concept of amixture of an ellipsoidal inclusion in
an infinite homogeneousmatrix, thatwas developed to study elastic properties of heterogeneousmaterials, is ex-
tended to analyze the conductivity of rocks. A combination of the self-consistent and the differential effectiveme-
dium techniques allows developing a theoretical formula for the simulation of conductivity of anisotropic
heterogeneous materials. For particular isotropic cases, this formula is similar to the classical well-known solu-
tions that are largely used in practice such as Archie's law, Bruggman's theory and Bussian's equation. When ap-
plying to geomaterials, the developed theory provides the conductivities in both horizontal and vertical
directions. The anisotropy, defined as the ratio between these two conductivities, is a function of the porosity,
the shapes and the conductivities of each phase of rocks. This paper, focusing on a purely theoretical approach,
shows how the micromechanical parameters affect the macroscopic anisotropy of electrical conductivity and
resistivity of anisotropic materials.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electrical conductivity is an important geophysical property of rocks
and largely used in geo-sciences and petroleum-sciences such as geo-
pressure estimation (Eaton, 1975), hydrocarbon characterization (Ellis
and Singer, 2007) and mineralogy analysis (Hill and Milburn, 2003).
These properties are generally anisotropic due to the natural anisotropy
of the microstructure (Tabbagh and Cosenza, 2007). For example in the
case of compacted claystone, clay particles and pores are flat and align
with long axes perpendicular to sedimentary layering (Fig. 1). The
knowledge of the electrical anisotropy is then very important for the
interpretation of resistivity measurement.

Many theoretical and empirical methods were developed to study
the electrical conductivity and resistivity of rocks. The most famous
and classical approach is the empirical Archie's power law that was
developed for isotropic clean sandstone (Archie, 1942). This law is
then extended by Waxman and Smits (2003) for isotropic shaly
sandstone accounting the surface conductivity of the grains. These em-
pirical approaches are theoretically demonstrated afterward by Sen
et al. (1981) and Bussian (1983) based on the classical solution of
Bruggeman (1935). Bussian's result is then further developed by Revil
et al. (1998) considering the behavior of different kinds of ion in the

pore space. Although these theories are very developed, their applica-
tions are limited to isotropic materials.

For many decades, the micro–macro homogenization approaches
based on Eshelby's solution has been used as a powerful tool to study
anisotropic heterogeneous materials (Eshelby, 1957; Hornby et al.,
1994; Giraud et al., 2007). The macroscopic anisotropy is affected by
the anisotropy of each phase in the mixture, the shape and the orienta-
tion of the particles as well as the anisotropy of the stress acting on the
considered materials. Nguyen (2014) successfully employed this tech-
nique for the simulation of electrical resistivity and conductivity of sat-
urated and unsaturated sandstone.

This paper focuses on a theoreticalmodel of the anisotropy of electri-
cal conductivity and resistivity of geomaterials. Solid particles and pores
are supposed to have ellipsoidal shape and lay in the horizontal
direction. The vertical and horizontal conductivity are determined as
function of the conductivity of water filled in the pore space and that
of the solid particles as well as their shape and orientation. The anisot-
ropy parameter is defined as a ratio of the vertical and horizontal
conductivity.

We start by introducing Eshelby's solution for overall electrical con-
ductivity of a mixture of an ellipsoidal inclusion in an infinite homoge-
neous matrix. This solution is then developed by combining the self-
consistent (SC) and the differential effectivemedium (DEM) techniques
to obtain the macroscopic electrical conductivity of a mixture of many
components. The obtained result is, for the particular isotropic case,
confirmed to be identical to the classical well-known solutions of
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Bruggeman, Archie, Sen and Bussian. It is then applied for modeling the
anisotropy of rocks. This application is purely theoretical, i.e. no real cal-
ibration is done due to the lack of experimental data of the anisotropy of
electrical resistivity and conductivity of geomaterials. However it clearly
demonstrates how the micromechanical parameters affect the macro-
scopic anisotropy of electrical conductivity and resistivity of anisotropic
materials.

Notations

• C is the second order conductivity tensor
• A is the second order localization tensor
• P is the second order Hill's tensor
• 1 is the second order unit tensor
• f is the volume fraction
• C is the conductivity
• R is the resistivity
• c is the dimensionless conductivity, ratio between C and the conduc-
tivity of water

• r is the dimensionless resistivity, inverse of c
• ν and Q are the anisotropic parameters of the inclusion
• ϕ is the porosity
• V is volume of a phase in a mixture
• γ is the electrical anisotropy, ratio between vertical and horizontal
resistivity

The exponents and index

• m is for the matrix phase
• i is for the inclusions
• s is for the solid phase
• w is for water

• T is for transversal component of the transversely isotropic tensors
• N is for normal component of the transversely isotropic tensors
• SC is for self-consistent scheme

2. Theoretical framework

Considering a system of a single ellipsoidal inclusion in an infinite
homogenous matrix (Fig. 1, left-side), it is demonstrated that the elec-
tric field localization tensor is a function of the conductivity of the ma-
trix as well as the shape and the conductivity of the inclusion as
shown by the following equation (Giraud et al., 2007; Eshelby, 1957):

A ¼ 1þ P Ci−Cmð Þð Þ−1 ð1Þ

where 1 is the second order unit tensor and P is the Hill's tensor
which depends on the conductivity of the matrix Cm, the conductivity
Ci and the shape of the inclusion (Hill, 1965). For the case of spheroidal
transversely isotropic inclusion in transversely isotropic matrix and the
anisotropy evolution direction e3 is the same for the inclusion and the
matrix (Fig. 2), the Hill tensor is calculated by (Giraud et al., 2007;
Nguyen, 2014):
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T are the conductivity of the matrix in the normal
(e3) and transversal directions respectively. The parameter Q is a func-
tion of the shape and the anisotropy of the inclusionwhich is character-
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For the case when νb1 the parameter Q is calculated by:
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The parameter Q tends to 1/3 and 0 when ν tends to 1 (spherical
isotropic inclusion) and 0 (disk-like inclusion) respectively.

Note that for a mixture of n components, the volume average of the
localization tensor (calculated by Eq. (1)) satisfies the following condi-
tion:

∑n
k¼1 f kAk ¼ 1 ð4Þ

where fk andAk are the volume fraction and the localization tensor of
a phase k.

Fig. 1. Left-side: microstructure of compacted claystone (Hornby et al., 1994); Right-side: matrix-inclusion problem.

Fig. 2. Normal and transversal dimensionless resistivities versus porosity for the case of
nearly spherical particles: Q=0.3
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