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Wedescribe an implicit link betweenwaveform inversion and Fourier series based on inversionmethods such as
gradient, Gauss–Newton, and full Newton methods. Fourier series have been widely used as a basic concept in
studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We
show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic
waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities,
density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian
matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coeffi-
cients are determined by the sensitivity of a given function to sine and cosine functions. In the inversionmethod
for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given
functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine func-
tions. The orthogonal property of cosine and sine functionsmakes the full or approximateHessianmatrix become
a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or
may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent,
making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated
by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequen-
cies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to
compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms,
we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as
the gradient, full-Newton, and Gauss–Newton methods similar to waveform inversion.

© 2015 Published by Elsevier B.V.

1. Introduction

The least-squares method, used to solve over-determined sys-
tems, has been commonly applied as a method of fitting data, and
it is generally referred to as “regression” in statistics. One of the
major applications of the least-squares method is to interpret
subsurface structures from field data in geophysics, which is accom-
plished by minimizing a target objective function expressed as the
sum of squared residuals between observed and modeled data.
Geophysicists have made efforts to develop an efficient and accurate
inversion method by exploiting the least-squares method. A variety
of inversion methods were developed in all fields of geophysics.
Nonetheless, seismic waveform inversion is still challenging because
it generally suffers from the non-uniqueness problem of solutions,
local minimum problems, and a large amount of data. Since Lailly
(1983) and Tarantola (1984) introduced that a back-propagation
technique of the reverse-time migration can be applied to seismic

waveform inversion, a number of evolved versions of waveform in-
version algorithms have emerged. Some of them are carried out in
the time domain (Gauthier et al., 1986; Kolb et al., 1986; Mora,
1987), and others are performed in the frequency (Choi et al.,
2008a,b; Pratt, 1999; Pratt and Shipp, 1999; Pratt et al., 1998; Shin
and Min, 2006) or Laplace domains (Shin and Cha, 2008, 2009).
Scales et al. (1990) suggested a regularization method, and
Brandsberg-Dahl et al. (2003) applied a conjugate gradient method
to seismic inversion method. Bunks et al. (1995) suggested a multi-
scale method to overcome a local minimum problem, and Sirgue
and Pratt (2004) proposed a frequency-selection strategy for an effi-
cient inversion algorithm. Crase et al. (1990) and Ravaut et al. (2004)
applied the inversion algorithm to real field data. With the develop-
ment of computational technology, the 3-D acoustic waveform
inversion is becoming possible (Ben-Hadj-Ali et al, 2008; Sirgue
et al., 2008; Vigh and Starr, 2008). However, the 3-D elastic wave-
form inversion is still challenging. Most of the aforementioned
studies are based on the gradient, Gauss–Newton, or full Newton
methods. Strictly speaking, only the Gauss–Newton and full Newton
methods belong to the least-squares inversion methods.
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In this study, we apply the common inversion methods to obtain
Fourier coefficients, and compare the inversion process for Fourier anal-
ysis to that of seismicwaveform inversion. By doing so, we can interpret
themathematical meanings of the classical Fourier analysis and seismic
waveform inversion.

Fourier series have been used as a basic concept in studies on seismic
data interpretation. Fourier analysis is based on the fact that any function
can be expressed by the sum of weighted cosine and sine functions. Fou-
rier coefficients are the constants that fit a sum of cosine and sine func-
tions to a given function perfectly. Such coefficients have usually been
obtained via classical Fourier analysis. In other words, the coefficients
have been obtained from the orthogonal property of cosine or sine
functions, which is done by integrating the production of the given func-
tion with cosine or sine functions for a given finite or infinite interval.

When we employ the conventional waveform inversion methods
such as the gradient, full Newton, or Gauss–Newton methods to obtain
the Fourier coefficients, we measure how the residuals between given
functions and test functions (composed of cosine and sine functions)
are sensitive to cosine or sine functions. Though seismic data are highly
nonlinear and thus seismicwaveform inversion is extremely complicated,
the Fourier series are simple enough to be interpreted by using an inver-
sion algorithm.

In the following sections, we first describe the original interpretation
of Fourier analysis, and then we interpret Fourier series on the basis of
seismic inversion algorithms. Next we review a forward modeling of
wave equations using existing numerical modeling techniques such as
the finite-difference or finite-elementmethod, and the numerical struc-
ture of the resulting complex impedance matrix. Finally, we compare
the Jacobian and Hessian matrices for Fourier series with those of seis-
mic waveform inversion.

2. Fourier series

A Fourier series can be used to describe a function in a series of sines
and cosines such as
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where the coefficients a0, an, and bn can be expressed by the definite in-
tegrals of the given function f(x). If we compute the integral of Eq. (1)
for an interval [−π, π] and multiply it by 1/2π, then we obtain
(e.g., Boas, 1983; Kreyszig, 2006):
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Arranging Eq. (2) for the coefficient a0 yields
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In order to find the coefficient an, we compute
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The coefficient an can be obtained from Eq. (4) as

an ¼ 1
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f xð Þ cosnxdx: ð5Þ

In the same manner, we can find bn as
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3. Interpretation of Fourier series in terms of inversion

The Fourier coefficients can also be computed by introducing an in-
version method. When we compare the inversion for Fourier analysis
with seismic waveform inversion using gradient methods, the coeffi-
cients an and bn correspond to model parameters such as velocity, den-
sity, and elastic constants. If we define a test function as the sum of
weighted cosine and sine functions, the objective function can be
expressed by the l2 norm of residuals between the given and test func-
tions of
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where the test and given functions, u(x) and f(x), correspond to
modeled data and field data in seismic waveform inversion, respective-
ly. A set of optimal coefficients can be determined by minimizing the
sum of residuals expressed by Eq. (7), which is done by calculating the
gradients of the objective function with respect to the coefficients. The
gradients are expressed as
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From Eqs. (8)–(10), we note that computing the gradients is
equivalent to measuring the sensitivity of residuals to sine or cosine
functions.

In the full Newton method (e.g., Lines and Treitel, 1984), we scale
the gradients with the Hessians. The Hessians are written analytical-
ly as
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