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Eliminating seismic wavelet is important in seismic high-resolution processing. However, artifacts may arise in
seismic interpretation when the wavelet phase is inaccurately estimated. Therefore, we propose a frequency-
dependent wavelet phase estimationmethod based on the ant colony optimization (ACO) algorithmwith global
optimization capacity. Thewavelet phase canbe optimizedwith theACO algorithmbyfittingnearby-well seismic
traces with well-log data. Our proposed method can rapidly produce a frequency-dependent wavelet phase and
optimize the seismic-to-well tie, particularly for weak signals. Synthetic examples demonstrate the effectiveness
of the proposed ACO-based wavelet phase estimation method, even in the presence of a colored noise. Real data
example illustrates that seismic deconvolution using an optimummixed-phase wavelet can provide more infor-
mation than that using an optimum constant-phase wavelet.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The post-stack seismogram can be described using the convolution of
a reflectivity series model with a seismic wavelet (Robinson and Treitel,
2000). A major aim of seismic deconvolution is to eliminate the wavelet
from seismogram, so as to recover the reflectivity series and interpret
subsurface geometries (e.g., Yilmaz, 2001; Oliveira and Lupinacci, 2013).
In the frequency domain, a wavelet is determined by the amplitude and
phase spectra. Therefore, wavelet elimination requires removing both
its amplitude and phase spectra. In general, the frequency band of seismic
data is broadened after the wavelet amplitude spectrum is removed. The
seismic trace can be corrected to its zero-phase through the phase spec-
trum to eliminate wavelet. In this case, the positions of wavelet peaks
accurately correspond to the interfaces between two layers and thus
help to understand seismic interpretation. In addition, the impact of
wavelet side lobes on seismic resolution decreases, and the lateral conti-
nuity of seismic events improves (e.g., Zhang and Castagna, 2011; Yuan
andWang, 2013). However, inaccurate wavelet phase estimation will re-
sult in poor deconvolution, poor sparse–spike reflectivity inversion or
poor impedance inversion (e.g., Brown, 2004; Delprat-Jannaud and Lailly,
2005; Oliveira et al., 2009; Yuan andWang, 2011; Zhang et al., 2013). For
instance, the artifacts of “adjoint events” induced by non-zero phase
wavelet may be interpreted as effective events.

Spiking deconvolution or Wiener–Levinson (WL) deconvolution
technique (e.g., Leinbach, 1993; Robinson and Treitel, 2000) has been
broadly applied to remove a minimum-phase wavelet. Aside from the
minimum-phase wavelet assumption, the method requires reflectivity

to be a white random sequence. However, the real wavelet phase is
not often minimum phase, and a minimum-phase equivalent of the
wavelet can be eliminated using spiking deconvolution. The residual
phase, that is, the phase difference between real mixed-phase wavelet
and estimated minimum-phase wavelet by spiking deconvolution
may cause severe waveform distortion in deconvolution results
(e.g., Yuan and Wang, 2011).

Considering that underground reflectivity obeys a non-Gaussian dis-
tribution,Wiggins (1978) employs the entropy (or disorder) minimiza-
tion or equivalent kurtosis maximization criterion to describe the non-
Gaussianity features of data and proposes a minimum entropy
deconvolution approach. The basic idea of this method is to make the
non-Gaussianity of deconvolution result using an arbitrary mixed-
phase wavelet maximum. Themethod extends the application by elim-
inating the white reflectivity and minimum-phase wavelet assump-
tions. However, it magnifies strong reflection and suppresses weak
reflection (e.g., Ooe and Ulrych, 1979; Walden, 1985). In addition, it
cannot avoid instability in the presence of noise (e.g., Longbottom
et al., 1988;Wiggins, 1985).Minimumentropy deconvolution approach
fails when the center frequency is larger than the bandwidth
(e.g., White, 1988; Xu et al., 2012). This approach is also readily trapped
into a local solution when the initial model does not belong to a locally
convex space of the true model (e.g., Wiggins, 1985).

Similar to minimum entropy deconvolution, two other approaches
to obtain the global solution have been developed. One is the
constant-phase rotation method based on the maximum non-
Gaussianity of deconvolution results (e.g., Levy and Oldenburg, 1987;
Longbottom et al., 1988; White, 1988; Economou and Vafidis, 2012;
Wang et al., 2014). This method supposes that the wavelet or residual
wavelet phase is constant, which significantly restricts the range of
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model space. Constant-phase rotation is commonly applied to improve
the resolution of stationary seismic data. It is also extended to process
non-stationary seismic data (van der Baan, 2008; van der Baan and
Fomel, 2009; Edgar and van der Baan, 2011; Fomel and van der Baan,
2014) by dividing the data into partly overlapping sequences. The
other method is the mixed-phase wavelet scanning method, which is
also based on the maximum non-Gaussianity of deconvolution results.
With the given wavelet amplitude spectrum, this approach identifies
an optimum wavelet phase or all-pass filter via the exhaustive algo-
rithm (e.g., Porsani and Ursin, 1998; Ursin and Porsani, 2000) or via a
global optimization algorithm such as simulated annealing algorithm
(e.g., Wood, 1999) or genetic algorithm (e.g., Caraballo and Porsani,
2011), to ensure that the method can stably search for a global optimi-
zation result. However, both approaches are limited by the geological
model and processing data bandwidth. Moreover, noise can further
deteriorate the wavelet phase estimation.

Regularized inversion or Bayesian inversion method is proposed to
simultaneously estimate the wavelet and sparse reflectivity series,
with the assumption that the subsurface reflectivity series is sparse
within an infinite band. Velis (2008) introduces a simulated annealing
technique to eliminate the influence of wavelet phase and to obtain a
sparse–spike reflectivity based on the constant-phase wavelet assump-
tion. The inverted spikes can be utilized to interpret layer thickness or
even identify thin layers below tuning thickness (e.g., Puryear and
Castagna, 2008; Yuan and Wang, 2013; Sen and Biswas, 2015). Under
the condition of smooth wavelet in the time or transform domain and
continuous reflectivity in the space direction(s), the linearized tech-
nique is adopted to obtain an optimum sparse deconvolution result
and enhance seismic resolution (e.g., Kaaresen and Taxt, 1998;
Gholami and Sacchi, 2013). However, regularized inversion and Bayes-
ian inversion approaches strongly depend on the choice of the regular-
ization parameter(s), such as the relativeweight betweenfitness of data
and sparseness of reflectivity series.

These above statistical deconvolution or data-dependent
deconvolution methods have been used to remove wavelet effect or
estimate wavelet with various ranges of success. However, these con-
ventional methods require assumption about reflectivity. For instance,
reflectivity is assumed to be subject to non-Gaussian distribution,
Laplacian distribution, Student's T distribution or Cauchy distribution
(Li et al., 2013). To establish a quality control standard for statistical
deconvolution,well-log data is often used to replace the priori statistical
distribution assumption. Conventional constant-phase rotation tech-
nique based on a seismic-to-well match criterion (White and Simm,
2003) has been applied to high-resolution processing (e.g., Edgar and
van der Baan, 2011) and seismic inversion (e.g., Zhang and Castagna,
2011). In the present study, a frequency-dependent wavelet phase
scanning technique with the same criterion is presented to search for
an optimum mixed phase or an optimum root combination from a
limited number of solutions. The complex nonlinear process can be
mapped into ant colony to search the shortest path to food. Therefore,
an ant colony optimization (ACO) algorithm (Dorigo et al., 1996; Yuan
et al., 2009; Liu et al., 2015) can be used to solve the nonlinear problem.
Specifically, a smooth amplitude spectrum of wavelet can be achieved
from seismic data and applied to build a minimum-phase wavelet
having finite length. By combining nearby-well seismic data with
well-log data, we can use the new ACO algorithm to determine an opti-
mum wavelet phase or mixed-phase wavelet in a finite phase or root
space. For convenience, the proposed method is named as ACO-based
wavelet phase estimation (AWPE). Without the statistical assumption
of reflectivity, the evaluation criterion adopts convolution instead of
deconvolution or inversion to get rid of ill-posedness issues in inverse
problem. It can also optimize seismic-to-well tie, particularly for weak
reflection signals. Moreover, the method avoids the need to select the
regularization parameters.

In this paper, we describe the AWPEmethod,which includes the de-
composition of wavelet, the incorporation of the ACO algorithm into

wavelet phase estimation and the implementation of the ACO algo-
rithm. Three synthetic examples and a well-through real data example
are adopted to evaluate the performance of the proposed method.

2. Method

2.1. Wavelet decomposition

In the following descriptions, we assume that a discrete wavelet
w(t) can be represented as (w0,w1,⋯ ,wN). On the basis of the proper-
ties of forward Z transform and inverse Z transform (Sitton et al.,
2003), the discrete wavelet is expressed as

w tð Þ ¼ Z−1 wN z−α1ð Þ z−α2ð Þ⋯ z−αNð Þ½ �
¼ wN −α1;1ð Þ � −α2;1ð Þ �⋯ � −αN ;1ð Þ; ð1Þ

where αn(n=1,2, ⋯ ,N) represents the roots (or the zeros) of the Z
transform polynomial for wavelet (w0,w1,⋯ ,wN), * represents the con-
volution operator and Z−1[•] represents the inverse Z transform. The
wavelet sequence (w0,w1,⋯ ,wN) can be reconstructed using the convo-
lution of a series of two-term wavelets (−αn,1). In the frequency do-
main, the wavelet phase spectrum is described using the sum of the
phases of all two-term wavelets. Therefore, the phase of the recon-
structed wavelet changes when a real root or a pair of conjugate com-
plex roots varies. If only the symmetric movement of these roots in z
plane with respect to the unit circle is considered, i.e., the two-term
wavelets (−αn,1) are replaced by the corresponding two-term wave-
lets j �αnjð− 1

�αn
;1Þ, the new reconstructedwavelet can have the same am-

plitude spectrum as the original wavelet but different phase spectra.
Through various combinations of these roots and their counterparts, a
series of reconstructed wavelets that have a same amplitude spectrum
but different phase spectra can be produced. The number of recon-
structed wavelets is up to 2Nr+Nc, where Nr is the number of real roots
and Nc is the number of conjugate complex roots pairs.

2.2. Encoding and decoding for wavelet phase estimation

When the amplitude spectrum of a wavelet and its length are given,
a minimum-phase wavelet can be obtained via Hilbert transform or
Kolmogoroff technique (Claerbout, 1985). We assume that the real
roots and complex roots, whose imaginary parts are not less than
zero, are (β1,β2,⋯ ,βNr) and (γ1,γ2,⋯ ,γNc) respectively. A wavelet li-
brary having 2Nr+Nc wavelets that share the same amplitude spectrum
but different phase spectra can be constructed by simply transforming
the root βi and/or γi into 1/βi and/or 1/γi. Therefore, wavelet phase esti-
mation can be described as the search for the optimum root combina-
tion that leads to the best seismic-to-well tie. In general, the sum of Nr
and Nc is more than 30. At least, 230 wavelets or root combinations
must be scanned and evaluated using the exhaustive search technique.
Hence, the computation cost is highly expensive. In fact, the process for
seeking the optimumwavelet phase can be regarded as a combinational
optimization problem for searching Nr + Nc roots from the set {(β1, 1/
β1),…, (βNr, 1/βNr),(γ1, 1/γ1),…, (γNc, 1/γNc)}. It is worth noting that
one root from each pair of symmetric roots is chosen. This procedure
is similar to the process of foraging ants searching for the shortest
path. Root combination optimization can be achieved by simulating
the ant colony cooperation behavior, and thus an optimum mixed-
phasewavelet can be estimated. Bymeans of heuristic search controlled
by pheromone, the ACO algorithmcan rapidly converge to the global so-
lution. An encoding operation is necessary tomap thewavelet phase es-
timation problem to the root combination optimization problem,which
can be implemented by ACO algorithm. Conversely, a decoding opera-
tion is also required to transform the sub-paths where ant passes into
a discrete wavelet series.
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