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A key step in high-frequency surface-wave methods is to acquire the dispersion properties of surface waves. To
pick dispersion curves, surface-wave data is required to be transformed from the time–space (t–x) domain to the
frequency–phase velocity (f–v) domain. In constructing accuratemulti-mode dispersion curves, it is necessary to
generate a reliable and high-resolution image of dispersion energy in the f–v domain. At present, there are five
methods available for imaging dispersion energy: the τ-p transformation, the f-k transformation, the phase
shift, the frequency decomposition and slant stacking, and the high-resolution linear Radon transformation.
Among them, resolution of the high-resolution linear Radon transformation is the highest. We proposed a pro-
cessing step to enhance resolution of the other four methods. Resolution of the four enhanced methods and
high-resolution linear Radon transformation is compared by imaging dispersion energy of the same synthetic
data. As a result, the four enhanced methods generated dispersion images with the same resolution, which re-
vealed that the resolution of the five dispersion-imaging methods is essentially equivalent for noise-free data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Surface waves are dispersive for layered earth models. Particular
modes of surfacewaveswill possess unique phase velocities at different
frequencies. A key step in high-frequency surface-wave methods is to
acquire the dispersion properties of surfacewaves. Generating a reliable
and high-resolution image of dispersion energy in frequency–phase ve-
locity (f–v) domain is of essential necessity (Xia, 2014). From a high-
resolution dispersion image, accurate dispersion curves can be picked
by following peaks of dispersion energy at different frequencies, leading
to an effective inversion.

In high-frequency surface-wave methods, there are five methods
available for imaging dispersion energy at present: the τ-p transforma-
tion (McMechan and Yedlin, 1981), the f-k transformation (e.g., Yilmaz,
1987), the phase shift (Park et al., 1998), the frequency decomposition
and slant stacking (Xia et al., 2007), and the high-resolution linear
Radon transformation (Luo et al., 2008). Among them, high-resolution
linear Radon transformation usually generates higher-resolution dis-
persion images than the other four methods do (Luo et al., 2008).
Since the method has been utilized in many applications (Herrmann
et al., 2000; Foster and Mosher, 1992; Thorson and Claerbout, 1985), it
has received more and more attentions. Based on our current works,

we find that there are ways to enhance resolution of the four other
methods, so that the five methods can possess the same resolution
power in the f–v domain. One simple practice is the numeric processing
that based on power operation.

In this paper, we first introduce principles of the five dispersion-
imaging methods and are solution-enhancing processing. Then disper-
sion energy of the same synthetic surface-wave shot gather is imaged
using all the five methods. Besides, the processing step is executed to
enhance resolution of dispersion images that are generated by τ-p
transformation, f-k transformation, phase shift, and frequency decom-
position and slant stacking. Finally, we conduct a comparison to sum-
marize resolution of the five dispersion-imaging methods.

2. Methods

To acquire dispersion energy in the f–v domain, a shot gather in the
time–space (t–x) domain is necessary to go through two steps: one is to
transform from the time domain to the frequency domain; the other
one is to transform from the space domain to the phase velocity domain
by velocity scanning and slant stacking. These two steps are indepen-
dent and they can switch their transformation sequences with each
other during calculation.

Let s(x, t) be surface-wave wavefield, where x is offset (distance be-
tween a source and a receiver) and t is travel time, all receivers are even-
ly arranged along a survey line with a spacing Δx.
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2.1. τ-p transformation (McMechan and Yedlin, 1981)

A slant stack operator is first applied to linearly transformwavefield
s(x, t) into τ-p domain data:

U p; τð Þ ¼
XN
i¼1

s xi; t ¼ τ þ pxið Þ; ð1Þ

where p is the slowness and τ is the intercept on the time axis. If the
scanning slowness p is close to the real slowness of surface wave,
U(p,τ) will reach a maximum. A Fourier transformation is then applied
to the data in the τ domain to transform them into the frequency do-
main. As p is simply the reciprocal of phase velocity (p=1/v), the f–v
domain result can be easily converted and achieved.

2.2. F-k transformation (e.g., Yilmaz, 1987)

Wavefield s(x, t) is first transformed to the f-k domain data S(k, f) by
a two-dimensional Fourier transformation:

S k; fð Þ ¼
Z ∞

−∞

Z ∞

−∞
s x; tð Þe−2πi ftþkxð Þdtdx: ð2Þ

This procedure could be replaced with a one-dimensional Fourier
transformation in the time domain and a one-dimensional inverse Fou-
rier transformation in the space domain. Then the f–v domain result can
be transformed according to the relation: v= f/k.

2.3. Phase shift (Park et al., 1998)

Phase information P( x,ω) of a wavefield can be calculated by a Fou-
rier transformation in the time domain. It is expressed as

P x;ωð Þ ¼ e−iωvxþφ0 ; ð3Þ

where ω is the circular frequency, v is the phase velocity and φ0 is the
initial phase. The phase is linearly correlated to offset. Integrate the
phase using a scanning φ:

U φ;ωð Þ ¼
Z

eiφxP x;ωð Þdx ¼
Z

ei φ−
ω
νð Þxþφ0dx ¼

XN
i¼1

ei φ−
ω
νð Þxiþφ0 : ð4Þ

When the scanning φ gets close to ω/v, phase angle of the complex
numbereiðφ−

ω
vÞxþφ0 is the same in the complex plane,making the integral

reaching a maximum value. At last, the f–v domain result can be
achieved according to the following relations:

f ¼ 2πω; and ð5Þ

v ¼ ω
φ

¼ 2πf
φ

¼ 2π
φ

f : ð6Þ

Phase shift method utilizes the normalized spectrum and can per-
formwell in generating dispersion image (Moro et al., 2003). Neverthe-
less, due to the uniqueness of calculated phase at each frequency,
dispersion energy of higher modes may not be completely imaged.

2.4. Frequency decomposition and slant stacking (Xia et al., 2007)

Shot gather s(x, t) is first stretched into pseudo-vibroseis data d(x,t)
using a frequency decomposition technique (Coruh, 1985):

d x; tð Þ ¼ y tð Þ⊕s x; tð Þ; ð7Þ

where ⊕ stands for the convolution operator and y(t) is a sweep func-
tion. Generally, y(t) is usually chosen as a linear function y(t)=a+bt.

So d(x, t) is also a frequency-swept data d(x, f) and each t corresponds
with a frequency. A slant stacking (Yilmaz, 1987, p. 430) is then per-
formed to obtain f–p domain data U(p, f). The f–v domain result can be
eventually achieved by inverting p.

The calculated result of this method is better than that of τ-p trans-
formation because frequencies are decomposed before slant stacking.
Furthermore, compared with phase shift, this algorithm could extract
stronger energy for higher-mode surface waves.

2.5. High-resolution linear Radon transformation (Luo et al., 2008)

Standard linear Radon transformation can be expressed as the
following equation

d x; fð Þ ¼
Xn
i¼1

m pi; fð Þei2πfpix; ð8Þ

where d(x, f) is a shot gather in the frequency domain andm(p, f) is the
Radon matrix. So Eq. (8) can be written as a matrix form:

d ¼ Lm; ð9Þ

where L=ei2πfpx is the linear Radon transformation (LRT) operator.
Eq. (9) can be rearranged as

madj ¼ LTd; ð10Þ

wheremadj represents a low-resolution solution using the transpose of L.
An appropriate weighting and damping factor will lead to a sparse

inversion solution and improve the resolution. Thus, the objective func-
tion becomes

J ¼ ‖Wd d−LW−1
m Wmm

� �
‖þ λ‖Wmm‖2; ð11Þ

and the problem turns into solving the following equation (Ji, 2006)

W−T
m LTWT

dWdLW
−1
m þ λI

� �
Wmm ¼ W−T

m LTWT
dWdd; ð12Þ

where I is the identitymatrix,Wd is a dataweightingmatrix andWm is a
model weightingmatrix,λ is a damping factor and controls the compro-
mise between the error misfit and model length. Eq. (12) can be solved
by the weighted preconditioned conjugate gradient (CG) algorithm
(e.g., Sacchi and Ulrych, 1995).

The resolution of high-resolution LRT depends on the iteration in
the CG algorithm. At the beginning of iteration, this method equals
with a standard LRT (only iterate once). With the number of iteration
growing, the resolution will be greatly improved (normally iterate 3
times).

2.6. A resolution-enhancing processing

We define the resolution of a dispersion image as the width be-
tween the two half-values of dispersion energy at a given frequency
in the f–v domain (Xia et al., 2006). τ-p transformation, f-k transfor-
mation, phase shift, frequency decomposition and slant stacking are
actually kinds of a standard discretized LRT and they generate dis-
persion images with a low resolution (Eq. (10)). To compare them
with high-resolution LRT, we deem them regular dispersion-
imaging methods in this paper for convenience. They suffer from in-
complete information (Trad et al., 2003) and could hardly generate
high-resolution dispersion images.

The mathematical power operation is able to amplify the difference
between large and small values, outstanding the maxima. Computing a
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