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Edge detection is one of the common processes in the interpretation of gravity data, and it gives a view of the
earth which highlights boundaries of geological bodies. Many mathematical techniques have been proposed
for edge detection including the curvature gravity gradient tensor method (CGGT). Eigenvalues of the curvature
gravity gradient tensor can well delineate the edges of some geological bodies. However, it cannot be applied to
complex gravity data with both positive and negative anomalies. Moreover, the CGGT method is also very sensi-
tive to noise. In view of limitations of themethod, we proposed an improved CGGTmethod by incorporating the
principal component analysis (PCA) into the CGGT formula. The improved method can be utilized to outline the
edges of causative bodies in more general cases and is insensitive to noise. The method was tested on synthetic
gravity data and actual gravity data recorded from ametallic mineral deposit area in themiddle-lower reaches of
the Yangtze River in China. All of the results have shown effectiveness of the proposed method.

© 2015 Published by Elsevier B.V.

1. Introduction

Gravity exploration has been playing an important role in mineral
resource detection. Rational interpretation of gravity data gives a view
of the earth that highlights geological bodies. Edge detection is one of
the common processes in the interpretation process. It brings out
edges of geologic targets and visualized features of geologic structures
(Nabighain et al., 2005a, 2005b; Wang et al., 2014).

Detection of the edges of gravity data is usually based on derivative
transformations of the anomaly data and its properties. Over the
decades, many edge detection techniques have been developed, such
as zero contours of the vertical derivatives, extreme points of total
horizontal derivatives and analytical signal amplitudes (Evjen, 1936;
Nabighian, 1972; Cordell and Grauch, 1985; Blakely and Simpson,
1986; Mallat and Zhong, 1992; Trompat et al., 2003; Wijns et al.,
2005; Cooper and Cowan, 2008).

Using of curvature attributes is a popular technique in seismic data
interpretation, whichmeasures the degree of bending of seismic reflec-
tions along a surface or in a volume, enabling identification of subtle
faults, fractures, and other geological features (Roberts, 2001; Klein
et al., 2008; Guo et al., 2014). Then, the curvature method is applied to
the interpretation of potential field data. Hansen and deRidder (2006)
have proposed an approach to depict the linear feature and depth esti-
mation for aeromagnetic data based on the curvature of the total hori-
zontal gradient. Phillips et al. (2007) have established a new method

to interpret the potential field data using curvature attributes. Cooper
(2009) has used profile curvature to detect the edges of causative
sources. Oruç et al. (2013) have used the curvature gravity gradient ten-
sor (CGGT) to interpret the geological structure of the Erzurum Basin.

With CGGT method, the edges of geological bodies are outlined by
eigenvalues of the gravity gradient tensor. However, the curvature-
based approach has not yet become a mainstream technique for detec-
tion of the edges of gravity anomalies for some flaws. Based on former
research, we found out that it cannot be applied to complex gravity
data with both positive and negative anomalies. More narrowly, the
large eigenvalues of CGGT can only outline edges of geological bodies
with positive density contrast, while the small eigenvalues can only de-
lineate the edges of geological bodies with negative density contrast.
Unfortunately, actual field data is general to be composed of positive
anomalies as well as negative anomalies. Zhou et al. (2013) have incor-
porated the raw field data into the CGGT formula to make it suitable for
complex gravity data, and called it the improved curvature gravity
gradient tensor (ICGGT). Nevertheless, the ICGGT method is not very
effective when the data is contaminated with a lot of noise. Noise in
the raw data will blur the edges identified by ICGGT, and some false
edges will be depicted as well.

In the work discussed in this paper, the CGGT method for detection
of the edges of gravity anomalieswas improved by the principal compo-
nents analysis technique (PCA). PCA is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possi-
bly correlated variables into a set of values of linearly uncorrelated var-
iables called principal components. With PCA, we can elect principal
components while neglecting small blurs in the raw data. The new
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improvedmethod is proposed as amean of edge detection inmore gen-
eral cases. Meanwhile, it is not very sensitive to noise in the data. The
new approach was tested by using both synthetic gravity anomaly
data and real gravity data from a metallic deposit area in the middle-
lower reaches of the Yangtze River in China.

2. Analysis of the conventional CGGT method

The derivation ofHessianmatrix of thehorizontal vector gradients of
gravity data ismade byHansen and deRidder (2006) formagnetic appli-
cations. TheHessianmatrix is also called curvaturewhichdescribes how
bent a curve or surface is at a particular point on a geometric curve or
surface (Oruç et al., 2013). The curvature gradient matrix of the gravity
field is defined as Eq. (1),

G ¼
∂gx
∂x
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∂gy
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where gx is the gravity data, gx and gy are the horizontal gravity vectors

in x and y directions, ∂gx∂x ,
∂gx
∂y ,

∂gy
∂xand

∂gy
∂ydenote the first order derivatives of

gx and gy in x and y directions respectively. Matrix G is symmetric

because of the relationship ∂gx
∂y ¼ ∂gy

∂x . And it can be represented with a

diagonal matrix whose components are the eigenvalues of Hessian
matrix, and we write it as Eq. (2) (Boring, 1998),

Λ ¼ λ1 0
0 λ2

� �
ð2Þ

where λ1 and λ2 are the eigenvalues. Then, Eq. (3)

G−ΛIð Þx ¼ 0 ð3Þ

is utilized to compute λ1 and λ2, where x denotes the eigenvectors of
matrix that corresponds to the particular eigenvalues. The eigenvalues
of matrix G can be written as Eq. (4),
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With Eq. (4), we can calculate the eigenvalues λ1 and λ2. Then, we
plot the zero-contour of the eigenvalues, and the zero-contour can de-
lineate the edges of causative bodies. In this sense, the eigenvalues are
similar to vertical derivative of the gravity anomaly, and they can be
used to detect edges of gravity data.

However, numerical tests have proven that the CGGT method can-
not be applied to complex gravity data with both positive and negative
anomalies. More narrowly, the large eigenvalues of CGGT can only out-
line edges of geological bodies with positive density contrast, while the
small eigenvalues can only delineate edges of geological bodies with
negative density contrast. Moreover, the conventional CGGT is also
very sensitive to noise. Zhou et al. (2013) have incorporated the raw
field data into the CGGT formula to make it suitable for complex gravity
data, and it is written as
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where matrix Data represents the raw field data. The improved CGGT
method can delineate edges of geological bodies with both positive
density contrast and negative density contrast simultaneously. Based
on model experiments, we find that both the CGGT and the ICGGT are
sensitive to the effect of random noise. The detected edges can easily
be blurred by the noise contained.

3. The improved CGGT method with PCA

In this section, we utilized principal components analysis (PCA)
technique to improve the conventional CGGT. PCA was invented in
1901 by Karl Pearson (Pearson, 1901), and it is a statistical procedure
that uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelat-
ed variables called principal components. The number of principal com-
ponents is less than or equal to the number of original variables. This
transformation is defined in such a way that the first principal compo-
nent accounts for as much of the variability in the data as possible,
and each succeeding component in turn has the highest variance possi-
ble under the constraint that it is orthogonal to the preceding compo-
nents (Abdi and Williams, 2010). We applied the PCA into the formula
of conventional CGGT method, and we call it the improved curvature
gravity gradient tensor with principal component analysis (PCICGGT).

In the presented paper, we used singular value decomposition (SVD)
to perform PCA. Assume the raw data is represented with a two dimen-
sionalm × nmatrix X (it can be thought as the raw data laid out in a 2D
grid), then it can be decomposed by SVD, i.e. Eq. (6):

X¼UΓVT ð6Þ

where U is an m × m matrix, Γ is an m×n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and V is an n × n
matrix (Gilbert, 1980). The diagonal entries of Γ are the singular values
of matrix X. In PCA we find the directions in the data with the most
variation, i.e. the eigenvectors corresponding to the largest eigenvalues
of the covariancematrix, and project the data onto these directions. The
eigenvectors corresponding to the larger singular values in matrix Γ are
the directions in the data with themost variation. The principal compo-
nents in raw data can be constituted with the relatively lager singular
values and the eigenvectors in matrices U and V.

At this point, the proposed PCICGGT is defined as a polynomial
named τ (Eq. (7)),

τ ¼ max Γ1; Γ2;…; Γkð Þ � UkΓkVT
k � A þ Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A−Bð Þ2 þ 4C
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whereUk,Vk and Γk are thefirst k columns and rows ofmatricesU,V and
Γ in Eq. (6) respectively, which means that matrices Uk and Vk are ob-
tained by setting all but the first k columns and rows equal to zero
and matrix Γk is acquired by setting all but the first k largest singular
values equal to zero. Γk is the kth singular value of the initial singular
values of data matrix (arranged in decreasing order). The square root
in Eq. (7) is conducted with element-wise square root. Matrices A, B
and C are given in Eqs. (8)–(10).

A ¼
∂2 UkΓkVT

k

� �
∂x2 ð8Þ

B ¼
∂2 UkΓkVT

k
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C ¼
∂2 UkΓkVT

k
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