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Coherencymeasurements have proven to be an effectivemethod for representing geological discontinuities such
as faults and stratigraphic features in 3-D seismic data volumes. Unfortunately, application of the algorithm suf-
fers from the limitation of computation cost. This paper describes a new fast method for efficient and robust co-
herency estimation in 3-D seismic data. The method is characterized by greatly increasing the computational
efficiency based on information divergence, which uses a recursionmethod and defines a new criterion by infor-
mation divergence to calculate the coherency, to avoid directly computing the eigenvalues of the covariance
matrix. In contrast to other algorithms, this method possesses higher computational efficiency and better anti-
noise ability than commonly used methods. We demonstrate the advantage of this method using real seismic
data examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The coherency technology is a powerful tool for seismic data inter-
pretation in detection and imaging of geological discontinuities
(Chopra and Marfurt, 2007). The first algorithm was proposed by
Bahorich and Farmer (1995), which cross correlated each trace with
its in-line and cross-line neighbors in the two adjacent axis directions
of one quadrant and combined the two results after normalizing by
the energy (Bahorich and Farmer, 1995). Since this approach deals
with only three traces, it is computationally very efficient, but it may
lack robustness, especially when the data is noisy. The second genera-
tion of coherency detection algorithm used semblance as a coherence
estimate (Marfurt et al., 1998). Using more traces in coherency compu-
tation results in better stability in presence of noises. The third genera-
tion coherency algorithm, C3, is eigen-structure based, the coherency
measures the ratio of dominant eigenvalue and the trace of the covari-
ance matrix which is constructed with a small subvolume within an
analyzing window (Gersztenkorn and Marfurt, 1999). It is more robust
to measure coherency than the previous algorithm does; however, its
application was affected by a large computational cost to construct the
covariancematrix and calculate thedominant eigenvalue. In order to re-
duce the computational cost in this new algorithm, Cohen and Coifman
(2002) proposed to use the local structural entropy (LSE) as a coherency
measure. Li et al. (2006) and Lu et al. (2005) both used a supertrace

technique to reduce the dimensions of the covariance matrix to 4 × 4.
However, all these earlier works have not discussed the proper imple-
mentation to maintain the computational efficiency, especially for
calculating the dominant eigenvalue of the covariance matrix (Wang
et al., 2012).

Wang et al. (2012) proposed an efficient implementation of
eigenstructure-based coherency algorithm using recursion strategies,
which can greatly reduce the calculation of coherency estimation and
improve the computational efficiency. However, as an iterative algo-
rithmusing a powermethod, certain calculation is still needed, especial-
ly when all traces within an analysis window are inconsistent, where all
of the eigenvalue of the covariance matrix are almost the same, a large
number of iterations are required to calculate the dominant eigenvalue.
In real applications, the number of iterations is usually predetermined,
thus, in the case that all of the eigenvalue of the covariance matrix are
nearly indistinguishable, the accuracy will be hard to manage. In this
paper, we propose an accelerated algorithm for coherency measure-
ment called information divergence coherency algorithm (IDCA). This
new algorithm mainly uses normalized information divergence as a
coherency measurement and aims to avoid directly compute the domi-
nant eigenvalue. By combining the recursion strategies proposed by
Wang et al. (2012) with information divergence, the method can be
rather fast with a high computing precision.

The paper is organized as follows. In Section 2, we briefly introduce
the C3 algorithm. The proposed method based on information diver-
gence is introduced in Section 3. In Section 4, a real data example is
provided to demonstrate the effectiveness of our method. Finally, we
give the conclusion in Section 5.
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2. The eigen-structure-based coherency algorithm

The algorithm was first proposed by Gersztenkorn and Marfurt
(1999). Suppose that the sub-volume of seismic traces to be analyzed
includes J traces (for example, 3 in-line traces by 3 cross-line traces for
a total of 9 traces) andN samples per tracewhen coherency is estimated
for a point in a 3D cube. Organizing the amplitude in this suite of traces
by sample index n and trace index j results in the data matrix D:

D ¼
d11 d12 … d1 J
d21 d22 … d2 J
⋮ ⋮ ⋮ ⋮

dN1 dN2 … dN J

2
664

3
775: ð1Þ

The covariance matrix of D for a point can be calculated and
formulated by

C ¼ DTD ¼

XN
n¼1

d2n1
XN
n¼1

dn1dn2 …
XN
n¼1

dn1dn J

XN
n¼1

dn1dn2
XN
n¼1

d2n2 …
XN
n¼1

dn2dn J

⋮ ⋮ ⋮ ⋮XN
n¼1

dn1dn J
XN
n¼1

dn2dn J …
XN
n¼1

d2n J

2
666666666664

3
777777777775
: ð2Þ

The covariance matrix C in Eq. (2) is symmetric and non-negative,
i.e., all its eigenvalues are greater than or equal to zero. The
eigenstructure-based coherency makes use of the covariance matrix C,
denoted by Tr(C), which demonstrates the total energy for the traces
enclosed by the analysis cube, and is equal to the sum of the eigenvalues
(Chopra and Marfurt, 2007; Gersztenkorn and Marfurt, 1999).

C3 ¼ λ1

Tr Cð Þ ¼
λ1XJ

j¼1

cj j

¼ λ1XJ

j¼1

λ j

: ð3Þ

Eq. (3) defines the eigen-structure coherency as a ratio of the dom-
inant eigenvalue λ1 to the total energy within the analysis cube. The
expression of the last term in Eq. (3) can have a significant impact on
the computational efficiency of the coherency calculations for 3-D
seismic data. Summing the diagonal entries of the covariance matrix C
is much more efficient than computing all the eigenvalues followed by
their summation.

In fact, the distribution of eigenvalues describes the degree of coher-
ence between the seismic traces within the analysis window. For in-
stance, in two extreme cases, waveforms will be completely consistent
when only the dominant eigenvalue is greater than zero and all others
are equal to zero (C3 will be 1.0), or completely inconsistent when all
the eigenvalues are the same (C3 will be 1

�
J and the range of coherence

value from 1
�
J to 1.0 in Eq. (3)).

In addition, inspired by the information theory (Anastassiou, 2004;
Qiao and Minematsu, 2008; Salicrú, 1994), there are different ways for
discontinuity measurement, such as information measurement, which
plays a key role in information divergence. In the following section,
wewill define ameasure of coherency using the information divergence
and will focus on discussing the information divergence coherency
algorithm (IDCA).

3. The information divergence coherency algorithm

Based on the statistics and information theory, one of the important
issues in the application of probability theory is to find an appropriate
measure of difference (distance or discrimination) between two
probability distributions. Information divergence for this purpose pro-
vides a measure of the difference or distance between two probability

distributions. Let X and Y be two discrete random variables with distri-
bution being p1 = (p11, p12, …, p1J) and p2 = (p21, p22, …, p2J), respec-
tively. The information divergence of the probability distribution
between p1 and p2 is given by (Zhang and Gao, 2011; Yang et al., 2013)

Dϕ p1;p2ð Þ ¼
XJ

n¼1

p1nϕ
p2n

p1n

� �
ð4Þ

where ϕ : (0, ∞) → R is a convex function and ϕ(1) = 0.
For a convex function ϕ defined on R, applying classical the Jensen

inequality for variable X(n) = p2n/p1n, then, X(n) satisfies

E ϕ Xð Þ½ � ≥ ϕ E X½ �ð Þ ð5Þ

here E [] denotes the mathematical expectation.
Therefore, using the Jensen's inequality for Eq. (4), we obtain

Dϕ p1;p2ð Þ ¼
XJ

n¼1

p1nϕ
p2n

p1n

� �
≥ ϕ

XJ

n¼1

p1n
p2n

p1n

 !
¼ ϕ 1ð Þ ¼ 0: ð6Þ

But the equality holds if and only if p1 = p2.
Considering the above eigenvalue-based algorithm, if we choose p1

and p2 as

p1n ¼ λn

Tr Að Þn ¼ 1;2;…; J ð7Þ

p2n ¼ 1
J
n ¼ 1;2; ⋯; J ð8Þ

where A is a covariance matrix formed from a sub-volume of seismic
traces within an analysis window, λn denotes the nth eigenvalue of A,
Tr(A) is the trace of matrix A, J is the dimension of A. p2 indicates the sit-
uation in which all the traces within an analysis window have different
shapes. Thus,we can see thatDϕ(p1,p2) is nonnegative, andwill become
larger when more traces within the analysis window have the same
shapes.

If ϕ(x) = x log x, we have the Kullback–Liebler divergence, as given
by

DKL p1;p2ð Þ ¼
XJ

n¼1

p1n loga
p1n

p2n
a N 1ð Þ : ð9Þ

Substituting Eqs. (7) and (8) into Eq. (9), we obtain

DKL ¼
XJ

n¼1

p1n loga
p1n

p2n
¼
XJ

n¼1

λn

Tr Að Þ loga J þ loga
λn

Tr Að Þ
� �

¼
XJ

n¼1

λn

Tr Að Þ loga J þ
1
lna

lnð1þ λn

Tr Að Þ−1
� �� �

¼
XJ

n¼1

λn

Tr Að Þ loga J þ
1
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X∞
n¼1
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λn

Tr Að Þ−1
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m

2
4

3
5
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λn

Tr Að Þ loga J þ
1
lna

X∞
n¼1

−1ð Þm−1
1− λn

Tr Að Þ
� �m

m
Þ −1ð Þm

2
4

3
5

¼
XJ

n¼1

λn

Tr Að Þ loga J−
1
lna

X∞
n¼1

1− λn
Tr Að Þ

� �m
m

2
4

3
5

¼ 1
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1
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� �m
m
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2
4

3
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≈ 1
Tr Að Þ Tr Að Þ loga J−

1
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