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For a detailed characterization of near-surface environments, geophysical techniques are increasingly used to
supportmore conventional point-based techniques such as borehole and direct-push logging. Because theunder-
lying parameter relations are often complex, site-specific, or even poorly understood, a remaining challenging
task is to link the geophysical parameter models to the actual geotechnical target parameters measured only at
selected points. We propose a workflow based on nonparametric regression to establish functional relationships
between jointly inverted geophysical parameters and selected geotechnical parameters as measured, for
example, by different borehole and direct-push tools. To illustrate our workflow, we present field data collected
to characterize a near-surface sedimentary environment. Ourfield data base includes crosshole groundpenetrating
radar (GPR), seismic P-, and S-wave data sets collected between 25 m deep boreholes penetrating sand- and
gravel dominated sediments. Furthermore, different typical borehole and direct-push logs are available. We
perform a global joint inversion of traveltimes extracted from the crosshole geophysical data using a recently
proposed approach based on particle swarm optimization. Our inversion strategy allows for generating consis-
tent models of GPR, P-wave, and S-wave velocities including an appraisal of uncertainties. We analyze the
observed complex relationships between geophysical velocities and target parameter logs using the alternating
conditional expectation (ACE) algorithm. This nonparametric statistical tool allows us to perform multivariate
regression analysis without assuming a specific functional relation between the variables.We are able to explain
selected target parameters such as characteristic grain size values or natural gamma activity by our inverted
geophysical data and to extrapolate these parameters to the inter-borehole plane covered by our crosshole
experiments. We conclude that the ACE algorithm is a powerful tool to analyze a multivariate petrophysical
data base and to develop anunderstanding of howamulti-parameter geophysicalmodel can be linked and trans-
lated to selected geotechnical parameters.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For various geotechnical and engineering purposes, a detailed char-
acterization of the subsurface is required. In this context, geophysical
techniques represent important tools because they are often the only
means to delineate subsurface structures and to estimate physical prop-
erties in two or three dimensions. Especially, crosshole tomographic
techniques (such as crosshole ground penetrating radar (GPR) or
seismic tomography) are increasingly used because of their improved
resolution capabilities compared to corresponding surface-based
geophysical techniques. The most popular and robust approaches to
analyze such crosshole GPR and seismic data sets are based on the
inversion offirst-break traveltimes. In various applications, recent studies
have also illustrated the potential benefit when combining GPR travel
time tomography with corresponding seismic techniques (e.g., Paasche
et al., 2006; Linde et al., 2008; Paasche et al., 2008), because such multi-

method exploration strategies can help to reduce uncertainties and
ambiguities in data analysis and interpretation. To be effective, the
data sets should be linked during the model-generation process using
a cooperative or joint inversion approach (Lines et al., 1988). To invert
for different parameters such as GPR and seismic velocities, it is com-
mon practice to use a structural link to couple the different geophysical
data sets during inversion (e.g., Haber and Oldenburg, 1997; Gallardo
and Meju, 2004; Paasche and Tronicke, 2007).

Most tomographic inversion approaches (including joint inversions)
rely on linearized methods to reconstruct the underlying parameter
fields (such as GPR and seismic velocities). In an iterative framework,
a local optimization method is used to modify a user-defined starting
model (e.g., Aster et al., 2005). Alternatively, global optimization (GO)
approaches have been proposed for tomographic inversions including
the inversion of traveltime data sets (e.g., Sen and Stoffa, 1995;
Sambridge and Mosegaard, 2002). Compared to linearized inversion
approaches, the advantages of GO approaches include the ability to pro-
duce results independent on the initial model, to explore the model
space in more detail, and to generate an ensemble of acceptable solu-
tions explaining the data equally well (e.g., Sen and Stoffa, 1995).
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Modern GO approaches such as particle swarm optimization (PSO;
Kennedy and Eberhart, 1995) are computationally efficient and, thus,
are potential tools to solve also complex or joint inverse problems in
geophysics. Recently, the potential of the PSO approach to invert
crosshole P-wave traveltimes has been demonstrated (Tronicke et al.,
2011). Furthermore, using a synthetic example Tronicke et al. (2012)
have presented a straight-forward implementation of a PSO based
joint inversion framework.

Regardless of the used inversion approach, the resulting parameter
models (e.g., GPR and seismic velocity models) have to be interpreted
in terms of the target structures and/or target parameter distributions.
Usually, the resulting tomographic velocity models are interpreted
manually considering available background information such as core
or geophysical logging data. However, for a detailed site characteriza-
tion, the geophysical parameters have to be translated into the corre-
sponding hydrological, geotechnical, or engineering parameters. Here,
the basic idea is to establish a parametric link to inter- or extrapolate
sparsely sampled 1D borehole or direct-push (DP) parameters using
2D or 3D geophysical models. However, formulating such a translation
remains a challenging task because the observed parameter relations
are often complex, site-specific, and sometimes also poorly understood.
Commonly, existing petrophysical or empirical relations established
between borehole data and parameters in the vicinity of the borehole
are used (e.g., Yamamoto et al., 1994; Angioni et al., 2003). When using
existing petrophysical relations to translate geophysical parameters
into target parameters, problems might arise because these relations
are usually derived from laboratory measurements under non in-situ
conditions and, thus, they might not be applicable universally and
site-specific petrophysical relations are required (e.g., Hubbard and
Rubin, 2000; Hyndman et al., 2000). To overcome the limitations of
preconceived relations and to account for uncertain and nonunique
parameter relations, also different statistical and geostatistical frame-
works have been proposed. Cassiani et al. (1998), for example, used a
geostatistical framework based on co-kriging to estimate hydraulic
conductivity from seismic velocities and sonic log data. Tronicke and
Holliger (2005) and Dafflon et al. (2009) proposed conditional stochas-
tic simulation approaches based on simulated annealing to integrate a
typical hydrogeophysical database for hydrological site characteriza-
tion. Such conditional stochastic simulations are considered as a power-
ful tool for data integration because they are conceptually simple and
flexible with regard to imposing constraints (e.g., Deutsch and Wen,
1998, 2000). Furthermore, Doyen and Boer (1996) proposed amultivar-
iate stochastic approach using Bayesian simulation to simulate sparsely
sampled target variables from denser sampled variables. This approach
was originally applied to inter- and extrapolate lithological data, but
was used in various fields including reservoir and hydrological charac-
terization (e.g., Ezzedine et al., 1999; Chen et al., 2001; Bosch et al.,
2010; Dubreuil-Boisclair et al., 2011; Ruggeri et al., 2013). Clustering
methods are another statistical approach to model a target parameter
by the integration of various geophysical data. For example, Paasche
et al. (2006) used a clusteringmethod to derive hydrological parameter
models from crosshole surveys.

Another promising statistical approach, which until today has been
rarely used in Earth Sciences, was introduced by Breiman and
Friedman (1985). Their alternating conditional expectation (ACE) ap-
proach is a nonparametric multiple regression method, which was de-
veloped to find functional relationships between a dependent variable
and one or more independent variables without any a priori informa-
tion regarding the model (e.g., linear dependencies). Recent studies
have shown the potential of this approach for analyzing geoscientific
data. For example, Xue et al. (1997) used the ACE algorithm for perme-
ability estimation from well logs. Furthermore, Nashawi and Malallah
(2006) related pressure gradient data and rock density to fracture gra-
dients using the ACE approach, whereas Scuzs and Horne (2009) used
the ACE approach to define functional relationships between different
parameters in a hydrological data set. These studies have shown that

the ACE approach is a versatile tool to analyze rather typical
geoscientific data sets when the underlying functional relationships be-
tween dependent and independent variables are unknown.

In this study, we investigate the potential of the ACE approach to link
jointly invertedmodels of GPR, P-wave, and S-wave velocities to different
sparsely sampled 1D borehole and DP parameter logs. After presenting
the methodological basics of our GO joint inversion strategy and the
ACE algorithm, we describe our field site and our data base which
includes crosshole GPR and seismic data as well as a variety of borehole
and DP logs. Then, we present the resulting velocity models and the
ACEderived optimal transformationswhich allowus to link our geophys-
ical velocities to target logging parameters (sleeve friction fs, effective
grain size d10, and gamma ray activity GR) and to extrapolate these
parameters across the entire inter-borehole plane.

2. Methodology

In this section, we present the fundamental methodological details
regarding data inversion and statistical analysis. After describing our
joint inversion strategy based on particle swarm optimization (PSO), we
present the alternating conditional expectation (ACE) method which
is used to link our inverted velocities to existing borehole and DP logs.

2.1. Particle swarm optimization

PSO is a recently developed GO approach inspired by the social
behavior of animals (Kennedy and Eberhart, 1995). Although PSO has
proven to provide excellent convergence rates in different optimization
problems, it has seldom been applied to invert geophysical data
(e.g., Fernández Martínez et al., 2010). Here, we have adapted the PSO
approach of Tronicke et al. (2011, Fig. 1) and apply it the first time to
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Fig. 1. Flow chart illustrating the key steps of the used PSObased joint inversion procedure
(modified after Tronicke et al., 2011).

96 M. Rumpf, J. Tronicke / Journal of Applied Geophysics 101 (2014) 95–107



Download	English	Version:

https://daneshyari.com/en/article/6447312

Download	Persian	Version:

https://daneshyari.com/article/6447312

Daneshyari.com

https://daneshyari.com/en/article/6447312
https://daneshyari.com/article/6447312
https://daneshyari.com/

