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Refraction-traveltime tomography is the most common approach and widely used for estimating velocity
models with rugged topography and strongly variant near-surface geology. However, for complex geograph-
ical structures, there is often a restriction to the application of the conventional approach because the
refracted energy can be trapped by the near-surface structure, which leads to limited depth penetration.
To solve this problem, we propose a velocity estimation algorithm for foothill areas using Laplace-domain
full waveform inversion (FWI) with irregular finite elements. Because the Laplace-domain FWI uses
wavefields damped exponentially in time, the acoustic wave equation can be applied to foothill datasets
without suppressing various types of elastic noise. In this study, irregular finite elements are generated to de-
pict complicated surface topography using a Delaunay triangulation and tetrahedralization algorithm. Fur-
thermore, adaptive mesh generation that formulates larger size elements with greater depth is used for
minimizing the intensive computational costs in solving the full wave equation in the 2D and 3D domains.
The validity of our proposed algorithm is demonstrated for 2D and 3D synthetic datasets and a 2D real explo-
ration dataset acquired in the complex Aquio field foothill area in Bolivia.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the large number of oilfields in folded and thrust belt areas,
these areas have been seismically imaged by many oil and gas explo-
ration companies. Prestack depthmigration results are determined by
the accuracy of the used velocity model, and refraction-traveltime to-
mography, using first-arrival traveltimes as input (Stefani, 1995; Zhu
and McMechan, 1989), is the most commonly applied velocity esti-
mation method. However, in foothill areas, the conventional method,
which uses the first-arrival traveltime of head waves or diving waves,
cannot provide correct large-scale velocity information because the
refraction energy can be easily trapped by complex near-surface
structures (Boonyasiriwat et al., 2009).

Laplace-domain full waveform inversion (FWI), as a macro-velocity
estimation technique,was developed to solve the nonlinearity of the in-
verse problem by utilizing the zero-frequency components of damped
wavefields (Shin and Cha, 2008). By adopting the logarithmic misfit
function, Laplace-domain FWI can match the weighted amplitudes of
both the first and later arrivals to the recorded data, and this increases
sensitivity to deeper velocity anomalies compared with refraction to-
mography (Bae et al., 2012).With the conventional Laplace-domain in-
version algorithm, wave modeling based on structured regular mesh
has been widely applied due to its computational efficiency. The mesh

generation process for a regular mesh is much simpler than it is for an
irregularmeshing algorithm. In addition, the element node connectivity
information does not have to be stored explicitly, and the simple formof
the global matrix reduces the computing costs (Pelties et al., 2010).
However, using a uniformly structured mesh is problematic when de-
scribing elastic domains having complex topographic features through
staircase approximation. Subsequently, the wave propagation in an
elastic half-space, such as diffractions of incident P, SV and Rayleigh
waves (Sánchez-Sesma and Campillo, 1993), can be severely distorted,
and the distortion in the wave modeling hinders the successful FWI. To
alleviate these problems, irregular meshing is necessary for elastic do-
mains having irregular free surfaces. Recently, there have been several
studies that have discussed large-scale elasticwavemodeling algorithm
using different types of finite element methods (FEMs) with irregular
unstructured meshes that have taken advantage of the rapid develop-
ment and availability in computing resources (Bao et al., 1998; Lee et
al., 2008).

The Laplace-domain wavefields are identical to the zero-frequency
components of damped wavefields in time; therefore the shape and
size restrictions of thefinite elements are not as limited bynumerical dis-
persion and spurious reflections as they are for time- and frequency-
domain wave modeling (Shin and Cha, 2008). Therefore, we apply the
standard FEM using linear irregular elements to the Laplace-domain
FWI instead of the high-order finite element approach. In addition, the
characteristics of unstructured mesh enable adaptive meshing, which
generates smaller elements for the complex topography and larger
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elements for the deep areas. Consequently, the computational burden
can be reduced further, which addresses a serious problem in 3D numer-
ical modeling.

In this paper, we briefly introduce the acoustic Laplace-domain
FWI algorithm and the feasibility of elastic dataset application. In ad-
dition, the superiority of the Laplace domain with respect to stable
numerical modeling using irregular finite elements is discussed. We
compare the numerical Green's function in a homogeneous back-
ground medium with the analytical Green's function to examine the
numerical stability of the modeling algorithm using irregular finite el-
ements. Subsequently, the computing performances using adaptive
and non-adaptive mesh generation are quantitatively compared. Fi-
nally, we apply the FWI algorithm to 2D and 3D synthetic datasets
and a real 2D dataset acquired in the geologically complex foothill
area of the Aquio field in Bolivia.

2. Theory

2.1. Laplace waveform inversion algorithm

Shin and Cha (2008) proposed that the objective function using
the logarithmic wavefields could be effectively applied to a Laplace-
domain waveform inversion. For a single Laplace damping constant,
the objective function using the log-norm can be expressed as
follows:
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wherem is the model parameter (e.g., the velocity, density, or imped-
ance); uij(m) is the Laplace-domain modeled data (subscripts i and
j are the source and receiver numbers, respectively); dij is the
Laplace-transformed data (which can be obtained by the integration
of the damped wavefield for a given damping constant); and ns and
nr are the numbers of shots and receivers, respectively.

The steepest descent direction is required to minimize the objec-
tive function, which can be established by taking the partial deriva-
tive of the objective function with respect to the model parametermk:
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where ℜ indicates the real component of the complex value.
By applying a back-propagation algorithm, the steepest descent

direction for all elements can be obtained as follows (Shin and Cha,
2008):
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where Fi∗ is the virtual source matrix (the superscript * denotes the
complex conjugate and t represents the transpose operator); S−1 is
the inverse of the complex impedance matrix originating from the
FEM; and ri is the residual wavefield.

In this study, the amplitude of the steepest descent direction is
scaled using the diagonal of the pseudo-Hessian matrix proposed by
Shin et al. (2001) and the damping factor λ is added to stabilize the
descent direction:
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After this calibration, the descent direction for each Laplace con-
stant is normalized by its maximum absolute value, which provides

the same weighting to the steepest descent directions obtained
using each Laplace constant. Subsequently, the final descent direction
can be established by summing the descent directions.

Ha et al. (2010) proposed that the Laplace-domain FWI based on
acoustic wave equation can be efficiently applied to the elastic
datasets from land exploration fields. This approach is inherited
from the characteristics of the Laplace-domain wavefield. The Laplace-
domain wavefield corresponds to a zero-frequency component of an
exponentially damped wavefield in the time domain (Shin and Cha,
2008). Therefore, the various elastic waves traveling slower than the
P-wave velocity can be damped out by taking the Laplace transform
with several damping constants, rendering their effect insignificant in
the acoustic FWI algorithm. Fig. 1a and b compares the time-domain
traces with and without elastic noise. Through the damping process,
both the elastic noises are completely damped out, and the difference
between the dampedwaves with and without elastic noises disappears
(Fig. 1c and d). Using this property in Laplace-domain wavefields, we
perform an acoustic Laplace-domain FWI using an elastic dataset.

2.2. Using irregular finite elements in the Laplace domain

Uniformly structured meshes using quadrilaterals or hexahedrons
have been widely employed in wave modeling and FWI for several rea-
sons: 1) the regular mesh generation process is simpler and faster than
irregular meshing, 2) less memory space is required because the ele-
ment node connectivity information does not have to be stored explicit-
ly, and 3) the simple form of the globalmatrix and data structure reduce
the computing costs (Pelties et al., 2010). However, the staircase approx-
imation using structured regular mesh cannot precisely describe the ir-
regular topography in foothills, and elastic waves on the free surface
canbe severely distorted. The advantage of arbitrary triangular elements
in approximating to any boundary configuration has been demonstrated
by Zienkiewicz et al. (2005). Tetrahedrons also have similar properties
to the triangles. These factsmotivate us to use triangular and tetrahedral
elements for Laplace-domain wave modeling and FWI in the foothills.

In generating the unstructured irregular mesh for the Laplace-
domain wave modeling and FWI, we should first define the boundary
of the elastic domain using the source and receiver elevation informa-
tion and the maximum depth of the model. Irregular meshing consid-
ering internal discontinuities is not necessary in our study because
there is no distinct velocity contrasts in the Laplace-domain inverted
model. After defining the domain boundary, we generate the irregular
elements using Delaunay triangulation and tetrahedralization algo-
rithms (Shewchuk, 1998). In the FEM, the poorly shaped elements
mainly characterized by the small angle may produce numerical in-
stability in the solution due to the round-off error in floating-point
operations (Shewchuk, 2002b). To minimize the numerical instability
of the Laplace-domain wavefields, the quality of the elements is con-
trolled. The minimum permitted angle measures the quality of the 2D
triangular elements, and it can be controlled by the Delaunay refine-
ment algorithm (Shewchuk, 2002a). If the minimum permitted angle
is α, it guarantees that every angle of the whole triangular element is
between α and 180 − 2 × α degrees. In the 3D case, the radius-edge
ratio, proposed by Miller et al. (1995), is used to measure the quality
of the 3D tetrahedral elements. The radius-edge ratio (Q) is defined as
Q=R/L where R is the radius of the unique circumsphere of the tetra-
hedron and L is the length of the shortest edge. Generally, tetrahe-
drons of higher quality possess a smaller value of the radius-edge
ratio. The minimum permitted angles of the regular triangle and the
radius-edge ratio of the regular tetrahedron are 60° and 0.612, re-
spectively. As the elements created by a mesh generator become sim-
ilar to the regular triangle and regular tetrahedron in the 2D and 3D
cases, the quality of the mesh is improved, but higher numbers of el-
ements are generated. On the surface, the sizes of the triangles and
tetrahedrons should be small enough to precisely approximate the ir-
regular topography. However, in the deeper area, the size of the
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