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Amodal decompositionmethod for computing the solution to an eddy-current problem is presented. Modes are
computed using the finite element method and the modes produced are simplified to a magnetic polarizability
dyadic in the form of a singularity expansion. This reduced form is a very compact and easily-implemented
model for the scatterer's reaction to an arbitrary magnetic field. Due to scaling properties, a single model can
be applied to scatterers with different sizes and conductivities. The modal decomposition method could be
used to compute a variety of parameterized simple models for canonical shapes to assist in algorithm design
for clutter discrimination in buried object detection systems. The method is verified using analytically known
formulas for the dyadic of a sphere and a loop. The code is then used to predict the behavior of cylinders with
arbitrary conductivity and size, showing excellent agreement with a set of measured cylinders.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of themain difficulties in buried object detection for the purpose
of clearing land mines or unexploded ordnance is distinguishing be-
tween a target of interest and a clutter target. Electromagnetic induction
(EMI) sensors show great promise in this respect, as these sensors are
much less responsive to variations in the properties of soils than their
electric or higher frequency electromagnetic counterparts.When dealing
with a soil that is not itself magnetic, EMI sensors reduce the clutter
problem to that of distinguishing between the responses of different
metallic objects. However, in regions with large amounts of man-made
metallic debris, the clutter problem can still make dangerous target de-
tection with a traditional metal detector too time-consuming to pursue.

A somewhat successful method for distinguishing metallic clutter
from desired targets is the use of wideband magnetic excitations. Sen-
sors might excite the buried object using a continuous wave multisine
(Scott, 2007) or with a broadband pulse (Nelson et al., 2001). The addi-
tional frequency data may then be used to delineate clutter from
non-clutter using a manually designed or machine-trained algorithm.
To use the additional frequency data obtained from a broadband sensor
in an intelligent way, a number of simple models for describing broad-
band induction have been proposed.

Several of these algorithms are based on Carl Baum's singularity
expansion method (Baum, 1999a). In Baum (1999a), it is proposed
that the inductively excited target be modeled by its magnetic polar-
izability dyadic as a function of frequency. Models that attempt to

extend this idea to deal with larger targets have also been proposed
(Sun et al., 2006; Zhang et al., 2001). In Barrowes et al. (2004), an al-
ternative approach is proposed where a target is approximated by the
best-fit prolate spheroid. We will focus on Baum's original magnetic
polarizability dyadic formulation in this paper.

A number of papers have used Baum's model to justify the expan-
sion of the frequency response in terms of a singularity expansion of
real-valued poles (Tantum et al., 2013; Wei et al., 2009). The interest
in this approach is generally motivated by the fact that the relaxation
time constants obtained are independent of the target's orientation,
which allows one to neglect the spatial behavior of the response. Be-
cause of this orientation-independence, the main computational work
on the polarizability dyadic has limited the discussion to the calculation
of the pole values (Carin et al., 2001; Geng et al., 1999). However, the
spatial shape of the target response can be a significant indicator of tar-
get symmetry, as discussed in Baum (1999b), and some work focusing
specifically on the spatial response has been done using time-domain
systems (Smith and Morrison, 2005).

In this work we provide a complete path for computing the mag-
netic polarizability dyadic. Rather than basing our work on Baum's
singularity expansion method, we instead begin with the eigenvalue
formulation proposed and later implemented with FEM in Davey
and Turner (1987) and Wong and Cendes (1988). This approach is
modal in nature, and therefore may be more familiar to engineers
than the singularity expansion method. It also has the advantage of
providing an eigenvalue system, which gives access to the modes of
the scatterer and efficient routines for locating the pole locations.

Because the use of finite-elements in eddy current work is not
new, even specifically for use in the EMI problem (Faircloth et al.,
2004; Hiptmair, 2002), the majority of this paper is dedicated to the
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modal solution and how the modes are used to construct the magnet-
ic polarizability dyadic. Much of this is independent of the numerical
method used to obtain the modes. For simplicity of meshing and
viewing, we use the body-of-revolution (BOR) assumption to com-
pute the modes, but the modal method does not require the
assumption.

In this paper, we begin with Section 2 by describing the modal solu-
tion and how it provides the form of a singularity expansion of the
scattered field. Next, we show how the computedmodes can be simpli-
fied to a term in the singularity expansion of themagnetic polarizability
dyadic. In Section 3 we provide a brief description of the BOR-FEM code
implemented to obtain themodes. In Section 4, the output of the code is
compared with the available analytic magnetic polarizability dyadics
and shows excellent agreement. In Section 5, a graph of the response
of an arbitrary cylinder is given up to the first two poles and compared
with measured data using the polarizability dyadic measurement sys-
tem described in Scott and Larson (2010).

2. The mode-based eddy current model

In this section, we begin by providing a modal solution to the
eddy-current problem. We show that this solution takes the form of
a singularity expansion of the scattered field response. After describ-
ing how the modes are obtained, we will show how they can be sim-
plified to an approximate representation as a portion of the magnetic
polarizability dyadic.

2.1. Field-based model of the eddy current response

Consider a conductive region like that shown in Fig. 1. The total

fields in this region, E
→t

;H
→t� �

, satisfy Maxwell's equations. We make

the standard eddy-current approximation of neglecting the displace-
ment current and apply a two-sided Laplace transform to the equa-
tion in the variable, s. The equations are,

∇� E
→t

¼ −sμH
→t

ð1Þ

∇�H
→t

¼ σσ rE
→t

ð2Þ

∇⋅E
→t

¼ 0 ð3Þ

∇⋅H
→t

¼ 0; ð4Þ

where μ is the permeability in the space and σ is the conductivity.
Each of these is assumed to be a constant. The function σr takes the
value,

σ r r
→
� �

¼ 1 r
→ ∈V

0 r
→ ∉V

�
ð5Þ

where r
→

is the position vector in the space. Note that σr can be made
non-constant on V with only a minor modification to the following
work.

Combining Eqs. (1) and (2), we obtain a Helmholtz-like equation,

∇�∇� E
→t

¼ −sμσσ rE
→t

: ð6Þ

The solution evaluated at s = jω corresponds to the Fourier trans-

form of E
→t

at the angular frequency, ω.
To formulate a scattering problem, we introduce the incident

fields, E
→i

;H
→i� �

, as shown in the right frame of Fig. 1. These fields

are what would be present in the region if the scatterer was not

there and they will also satisfy Maxwell's equations, Eqs. (1)–(4),
with σ = 0. For our purposes, the magnetic part of these fields will
be constant with space. However, any magnetostatic field produced

by a far-away current would suffice. We assume that given an H
→i

that has no s-dependence and that satisfies Eq. (2), we can easily

find an Ẽ
i that satisfies,1

∇� Ẽ
i ¼ H

→i
: ð7Þ

Solutions for the particular H
→i

of interest in this paper will be pro-
vided explicitly in Section 2.2. We then propose that the incident

electric field will take the form of a product, E
→i

r
→

; s
� �

¼ Ẽ
i r

→
� �

ei sð Þ.

Inserting this representation for E
→i

into Eq. (1) and using Eq. (7),
we obtain

∇� E
→i ¼ ∇� Ẽ

iei sð Þ ¼ H
→i

ei sð Þ ¼ −sμH
→i

⇒ei sð Þ ¼ −sμ

This suggests that

E
→i

r
→

; s
� �

¼ −sμ Ẽ
i
: ð8Þ

We define the scattered response, E
→s

;H
→s� �

, to be the difference

between the total and incident fields. Inserting E
→t

¼ E
→i

þ E
→s

into Eq.
(6) gives

∇�∇� E
→i

þ E
→s

� �
¼ −sμσσ r E

→i
þ E

→s
� �

:

Noting from Eq. (8) and our assumption on H
→i

, that

∇�∇� E
→i

¼ −sμ∇�H
→i

¼ 0;

we obtain the scattering problem,

∇�∇� E
→s

þ sμσσ rE
→s

¼ −sμσσ rE
→i

: ð9Þ

We will attempt to solve Eq. (9) using a modal decomposition
method. We consider the generalized eigenvalue problem

∇�∇� Ẽn r
→
� �

¼ λn Ẽn r
→
� �

when r
→ ∈V ð10aÞ

∇�∇� Ẽn r
→
� �

¼ 0 when r
→ ∉V ð10bÞ

∇⋅Ẽn ¼ 0 when r
→ ∉V ð10cÞ

E
→

n r
→
� ���� ��� ¼ O r

→
��� ���−2
� �

as r
→
��� ���→∞: ð10dÞ

∇� E
→

n r
→
� ���� ��� ¼ O r

→
��� ���−2
� �

as r
→
��� ���→∞: ð10eÞ

1 As a rule, tilded vector fields will represent quantities that are independent of the
Laplace variable, s. Following electromagnetics convention, both vector fields and vec-
tors will be denoted with an arrow, with the distinction determined from the context.
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