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The main issue of seismic attenuation characterizing method based on time–frequency analyzing method is the
time–frequency resolution. The adaptive optimal-kernel time–frequency representation, which has high time–
frequency resolution comparing with commonly used time–frequency analyzing method, is investigated. The
seismic attenuation qualitative characterizing method based on adaptive optimal-kernel time–frequency repre-
sentation is proposed. The synthetic data example and 3D field-data example reveal that the proposed method
can qualitatively characterize seismic attenuation, and the attenuated anomaly of this field-data example coin-
cides with gas reservoir well.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Almost 30 year ago, Taner et al. (1979) noted the occurrence of
lower apparent frequencies for reflectors on seismic sections beneath
gas and condensate reservoirs, and these anomalies can be used as
direct hydrocarbon indicator especially in thick reservoirs. These
anomalies, which can not be apparent on a broad-band stack, can
be observed clearly in spectrally decomposed sections. Many time–
frequency analyzing methods were used in seismic interpretations,
such as short time Fourier transform (STFT; Marfurt and Kirlin,
2001; Partyka et al., 1999), continuous wavelet transform (CWT; Li
and Liner, 2008; Matos and Marfurt, 2009; Sinha et al., 2005, 2009;
Zhu et al., 2009), S transform (Chen et al., 2009; Jinghuai et al.,
2003), Cohen's class time–frequency representation (Li and Zheng,
2008; Steeghs and Drijkoningen 2001; Ralston et al., 2007; Xiaoyang
and Liu, 2009; Zhang and Lu, 2009), and matching pursuit related
methods (Castagna et al., 2003; Chakraborty and Okaya, 1995; Liu
and Marfurt, 2007; Sun et al., 2002; Wang, 2007, 2010).

Chen Wenchao and Gao Jinghuai (2007) used the modified best
matching seismic wavelets (MBMSW) to characterize seismic attenua-
tion. Chen et al. (2009) used S transform (Jinghuai et al., 2003;
Stockwell et al., 1996) to detect low frequency shadow of gas reservoirs.
The CWT and S transform have different time–frequency resolution in
low frequency and high frequency, and the time–frequency resolution
of CWT and S transform is restricted byHeisenberg uncertainty theorem.
Matching pursuit, whichwas presented byMallat and Zhang (1993), has

high time–frequency resolution. Matching pursuit and its related
methods were also used to detect low-frequency shadows associated
with hydrocarbon (Castagna et al., 2003; Sun et al., 2002). However,
matching pursuit is high computational complexity method and the
result depends on the dictionary seriously.

The main job of Cohen's class time–frequency representation
(Cohen, 1989) is finding suitable kernel function to eliminate
cross-term interference and preserve auto-term. Fixed-kernel time–
frequency representations (Choi and Williams, 1989; Zhao et al.,
1990) are only suitable for a limited class of signals. Time–frequency
representation with signal-dependent optimal kernel can optimize its
kernel function to different classes of signals (Baraniuk and Jones,
1993). However, for signal whose characteristics change with time,
especially for seismic signal, time–frequency representations with
signal-dependent kernel function and fixed kernel function can not
track these changeswith time. Adaptive optimal-kernel time–frequency
representation (AOKTFR) proposed by Jones and Baraniuk employs ker-
nel function which can be adapted with time (Jones and Baraniuk,
1995), and its kernel function is optimized locally in a sliding window.
So the AOKTFR is more concentrated and readable than fixed kernel
time–frequency representation, and the time–frequency resolution of
AOKTFR is not restricted by the Heisenberg uncertainty theorem.
AOKTFR also has application in seismic sequence analysis. For its large
computation cost, Philippe gave up using AOKTFR to extract attributes,
but used signal-dependent optimal kernel time–frequency representa-
tion instead (Steeghs and Drijkoningen 2001).

In this work, we do not focus on estimating the Q factor, but focus
on characterizing 3D seismic data's attenuation qualitatively by using
AOKTFR. This paper is organized as follows: In section II, the principle
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of AOKTFR is investigated and is used to synthetic signal to test the
time–frequency resolution. Then, the seismic attenuation qualitative
characterizing method based on AOKTFR is proposed, and the pro-
posed method is used on a synthetic example. In section III, the seis-
mic attenuation qualitative characterizing method based on AOKTFR
is used on real field-data example to illustrate its effectiveness.

2. Method

2.1. Principle of AOK TFR

The instantaneous autocorrelation function of a signal s(t) is
defined as

R t; τð Þ ¼ s t þ τ
2

� �
s� t− τ

2

� �
ð1Þ

where τ is the time delay variable. The most important time–frequency
distribution, Wigner–Ville distribution, is defined as the Fourier trans-
form of instantaneous autocorrelation function with respect to τ,

WVD t;ωð Þ ¼ ∫þ∞
−∞s t þ τ

2
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Wigner–Ville distribution has the highest time–frequency resolu-
tion. However, the bilinear characteristic causes serious cross-term in-
terference. For instance, a signal which contained two time-shifted
and frequency-modulated Gaussian signals,

s tð Þ ¼ π−1=4 exp −α
2

t−t1ð Þ2 þ jω1t
h i

þ π−1=4 exp −α
2

t−t2ð Þ2 þ jω2t
h i
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one is concentrated at (t1,ω1), and the other is centered at (t2,ω2). Then
the Wigner–Ville distribution of s(t) is

WVD t;ωð Þ ¼ 2 exp −α t−t1ð Þ2− 1
α

ω−ω1ð Þ2
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þ 2 exp −α t−t1ð Þ2− 1
α
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where tm=(t1+t2)/2 and ωm=(ω1+ω2)/2 denote the geometric
time and frequency means between the two individual Gaussian
signals, td=t1−t2 and ωd=ω1−ω2 are the distance between two
individual Gaussian functions in time and the frequency domains. The
first two terms of Eq. (4) are auto-terms, and the last term represents
cross-term at (tm,ωm), midway between the two auto-terms. The syn-
thetic signal and its Wigner–Ville distribution are shown in Fig. 1. The
cross-term is at the midway, and oscillates in both time and frequency
directions, which make interpretation of Wigner–Ville distribution
difficult. So cross-term is critical in multi-component signal analyzing
and should be eliminated in the application.

If the integral variable in Eq. (2) is not time delay τ but t, the
signal's ambiguity function can be defined as

AF θ; τð Þ ¼ ∫þ∞
−∞s t þ τ

2
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here the variables τ and θ are parameters of ambiguity plane. The
bridge between Wigner–Ville distribution and ambiguity function is
2D Fourier transform

WVD t;ωð Þ ¼ 1
2π

∫þ∞
−∞∫

þ∞
−∞AF θ; τð Þe−jθt−jωτdθdτ ð6Þ

AF θ; τð Þ ¼ 1
2π
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Each bilinear time–frequency distribution in Cohen's class can be
interpreted as the 2D Fourier transform of a weighted version of the
ambiguity function (Cohen, 1989)

P t;ωð Þ ¼ 1
2π

∫þ∞
−∞∫

þ∞
−∞AF θ; τð ÞΦ θ; τð Þe−jθt−jωτdθdτ ð8Þ

where kernel functionΦ(θ,τ) can be treated as the weighted function.
Different choices for kernel function Φ(θ,τ) yield widely different
time–frequency representation. Referring to multi-component sig-
nals, auto-terms are centered at the origin of ambiguity domain,
while cross-terms are centered at a distance away from the origin
(the auto-terms in Eq. (4) are Gaussian functions, and cross-term is
oscillation term. Since the relation betweenWigner–Ville distribution
and ambiguity function is Fourier transform, the oscillated cross-term
in Eq. (4) must be away from origin at ambiguity plane). The distance
is proportional to the distance between the two components being
analyzed in time–frequency plane (Qian, 2001). This property
indicates that kernel function should be designed as a 2D low-pass
filter. Choi–Williams representation (Choi and Williams, 1989) and
Cone-shape representation (Zhao et al., 1990) are some well-known
members in Cohen's class.

Signal-dependent optimal kernel time–frequency representation
based on radially Gaussian kernel (Baraniuk and Jones, 1993) can
optimize its kernel function according to the ambiguity function.
This algorithm computes the ambiguity function of the entire signal,
determines the optimal kernel Φopt(θ,τ) based on ambiguity function
AF(θ,τ), and obtains the optimal time–frequency representation via
2D Fourier transform according to Eq. (8). However, for signals
whose characteristics change with time or online implementation,
especially for reflected seismic trace, adaptation of the kernel func-
tion over time is beneficial because it permits the kernel to match
the local signal characteristics. AOKTFR alters the kernel function at

Fig. 1. TheWigner–Ville distribution of a synthetic signal which contain two time-shifted
and frequency-modulated Gaussian signals (a) real part of synthetic signal; (b) Wigner–
Ville distribution of synthetic signal. The cross-term is at the midway between the two
auto-terms. It oscillates in both the time and frequency directions.
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