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This paper reviews previous studies on developments and applications of response surface methods (RSMs) in
different slope reliability problems. Based on the review, four types of soil slope reliability analysis problems
are identified from the literature, including single-layered soil slope reliability problem ignoring spatial variabil-
ity, single-layered soil slope reliability problem considering spatial variability, multiple-layered soil slope reliabil-
ity problem ignoring spatial variability, and multiple-layered soil slope reliability problem considering spatial
variability, which are referred to as “Type I–IV problems” in this study. Then, the computational efficiency and
accuracy of four commonly-used RSMs (namely single quadratic polynomial-based response surface method
(SQRSM), single stochastic response surface method (SSRSM), multiple quadratic polynomial-based response
surface method (MQRSM), and multiple stochastic response surface method (MSRSM)) are systematically
compared for cohesive and c–ϕ slopes, and their feasibility and validity in the four types of slope reliability
problems are discussed. Based on the comparison, some suggestions for selecting relatively appropriate RSMs
in slope reliability analysis are provided: (1) SQRSM is suggested as a suitable method for the single-layered
soil slope reliability problem ignoring spatial variability (i.e., Type I problem); (2) MQRSM is applicable to
the multiple-layered soil slope reliability problem ignoring spatial variability (i.e., Type III problem); and
(3) MSRSM is suggested to solve slope reliability problems (including single-layered and multiple-layered
slopes) considering spatial variability (i.e., Type II and IV problems).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reliability analysis of soil slopes has gained considerable attention in
the geotechnical reliability community over the past few decades
(e.g., Baecher and Christian, 2003; Low and Tang, 2004; Cho, 2007,
2009, 2010, 2013; Fenton and Griffiths, 2008; Ching et al., 2009; Wang
et al., 2010, 2011; Ji and Low, 2012; Ji, 2014; Zhang et al., 2013a,b;
Jiang et al., 2014, 2015; Li et al., 2011, 2014, 2015a). Many reliability
methods have been proposed for slope reliability analysis in literature,
such as the first-order second moment method (FOSM) (e.g., Christian
et al., 1994; Hassan and Wolff, 1999; Duncan, 2000; Xue and Gavin,
2007; Suchomel and Mašin, 2010), first-order reliability method
(FORM) (e.g., Low and Tang, 1997, 2004; Low, 2007; Cho, 2007; Hong
and Roh, 2008; Ji, 2014; Zeng and Jimenez, 2014), second-order reliabil-
ity method (SORM) (e.g., Cho, 2009; Low, 2014), and Monte Carlo Sim-
ulation (MCS) (e.g., El-Ramly et al., 2002, 2005; Griffiths and Fenton,
2004; Hsu and Nelson, 2006; Cho, 2007, 2010; Huang et al., 2010,
2013; Tang et al., 2015; Li et al., 2015c) and its advanced variants
(e.g., Ching et al., 2009; Wang et al., 2010, 2011; Li et al., 2015d).

In addition to the aforementioned reliability methods, response sur-
facemethods (RSMs) have been used for slope reliability problemswith
implicit performance functions (e.g. Wong, 1985; Xu and Low, 2006; Ji
and Low, 2012; Zhang et al., 2011b, 2013b; Jiang et al., 2014, 2015; Li
et al., 2015a,b; Li and Chu, 2015). RSMs have been proved to be an effi-
cient method for slope reliability analysis. For instance, Wong (1985)
applied RSM to evaluate the reliability of a homogeneous slope. Xu
and Low (2006) used RSM to approximate the performance function
of slope stability in slope reliability analysis, in which the response sur-
face is taken as a bridge between stand-alone numerical packages and
spreadsheet-based reliability analysis. Recently, several researchers
(e.g., Zhao, 2008; Li et al., 2013; Samui et al., 2013) proposed a support
vectormachine (SVM)-based RSM to approximate implicit performance
function using a small set of actual values of the performance function.
Taking the radial basis function neural network (RBFN) as an approxi-
mate response surface function for the actual performance function,
Tan et al. (2011) discussed similarities and differences between RBFN-
based RSMs and SVM-based RSMs, which indicated that there is no sig-
nificant difference between them. To reduce the number of evaluations
of the actual performance function, Tan et al. (2013) proposed two new
sampling methods and a hybrid RSM. Similar to SVM-based RSM, rele-
vance vector machine (RVM)-based FOSM is adopted to build a RVM
model to predict the implicit performance function and evaluate the
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partial derivatives with sufficient accuracy (Samui et al., 2011). In addi-
tion, the artificial neural network (ANN) technique (e.g., Cho, 2009;
Chen et al., 2011), the Gaussian process regression (Kang et al., 2015),
Artificial bee colony (ABC) algorithm optimized support vector regres-
sion (SVR) (Kang and Li, 2015), the high dimensionalmodel representa-
tion (HDMR) (Chowdhury and Rao, 2010) and neural networks (NN)-
based RSM (Piliounis and Lagaros, 2014) can be also used to establish
a relationship between the factor of safety and soil parameters. Luo
et al. (2012a,b) and Zhang et al. (2011a) adopted Kriging-based re-
sponse surface to simulate performance functions and demonstrated
its applications in solving several geotechnical reliability problems
(Zhang et al., 2013a). Yi et al. (2015) indicated that the particle swarm
optimization–Kriging model has a good curve fitting performance.

Recently, an important advance in slope reliability analysis using
RSM is that multiple response surface methods were proposed to eval-
uate system reliability of slope stability. For example, Zhang et al.
(2011b) first proposed the multiple response surfaces method for
slope reliability analysis. Ji and Low (2012) constructed a group of strat-
ified response surfaces corresponding to the most probable failure
modes, and slope system reliability is evaluated based on these strati-
fied response surfaces. Using the quadratic polynomial-based response
surface method, Zhang et al. (2013b) extended the Hassan and Wolff
method into a practical tool for system reliability analysis.

The aforementioned studies have not considered the spatial variabil-
ity when the RSMs are used to evaluate slope reliability problems.

Ji et al. (2012) made a first attempt to solve slope reliability with spatial
variability by the RSM with second-order polynomial approximate
function without cross terms. Based on the stochastic response surface
method (SRSM), Jiang et al. (2014) proposed a non-intrusive stochastic
finite element method for slope reliability analysis considering spatial
variability in shear strength parameters, by which the system reliability
of soil slopes considering spatial variability is evaluated by the multiple
stochastic response surface method (e.g., Jiang et al., 2015; Li et al.,
2015a; Li and Chu, 2015).

Based on the above studies, it can be seen that significant advances
have been made in applications of RSMs in soil slope reliability analysis.
Essentially, the RSM uses a computationally efficient model to approxi-
mate the original analysis model (e.g., limit equilibrium analysis or
finite element analysis). Then, slope reliability analysis is carried out
based on the explicit performance function represented by the RSM.
Table 1 summarizes the applications of RSM-based reliability methods
in soil slope reliability analyses. These references are listed in a
chronological order. The soil slope reliability problems concerned in the
previous studies on RSMs can be divided into four categories according
to the probabilistic model of soil properties (e.g., random variable or ran-
dom field models) and slope types (e.g., single-layered or multiple-
layered): (1) single-layered soil slope reliability problem ignoring
spatial variability (i.e., Type I problem); (2) single-layered soil slope reli-
ability problem considering spatial variability (i.e., Type II problem);
(3) multiple-layered soil slope reliability problem ignoring spatial

Table 1
Summary of applications of RSMs in soil slope reliability analyses.

Paper
ID

Authors Year Types of response surfaces Single
response
surface

Multiple
response
surfaces

Spatial
variability

Slope type Deterministic slope
stability analysis

No Yes Single-layered Multiple-layered

1 Wong 1985 Quadratic polynomial √ √ √ FEM
2 Xu and Low 2006 Quadratic polynomial without cross terms √ √ √ LEM (Spencer), FEM
3 Zhao 2008 SVM-based response surface √ √ √ √ LEM (Simplified Bishop,

Spencer)
4 Cho 2009 ANN-based response surface √ √ √ FDM
5 Chowdhury

and Rao
2010 High dimensional model representation √ √ √ LEM (Simplified Bishop,

Janbu,
Morgenstern–Price,
Spencer, GLE)

6 Chen et al. 2011 SVM-based response surface √ √ √ LEM (Morgenstern–Price)
7 Tan et al. 2011 RBFN and SVM-based response surface √ √ √ FEM
8 Samui et al. 2011 RVM-based response surface √ √ √ LEM (Simplified Bishop)
9 Samui et al. 2013 LSSVM-based response surface √ √ √ LEM (Simplified Bishop)
10 Luo et al. 2012a Kriging-based response surface √ √ √ √ FDM
11 Luo et al. 2012b Kriging-based response surface √ √ √ √ FEM
12 Ji et al. 2012 Quadratic polynomial without cross terms √ √ √ LEM (Spencer)
13 Ji and Low 2012 Quadratic polynomial without cross terms √ √ √ LEM (Ordinary, Spencer)
14 Zhang et al. 2011a Kriging-based response surface √ √ √ FDM
15 Zhang et al. 2011b Quadratic polynomial without cross terms √ √ √ √ LEM (Morgenstern–Price)
16 Zhang et al. 2013a Classical RSM without cross terms, quadratic

polynomial without cross terms,
Kriging-based response surface

√ √ √ LEM (Simplified Bishop)

17 Zhang et al. 2013b Quadratic polynomial without cross terms √ √ √ LEM (Simplified Bishop)
18 Li et al. 2013 Updated SVM-based response surface √ √ √ LEM (Simplified Bishop,

Spencer)
19 Tan et al. 2013 Quadratic polynomial √ √ √ LEM (Morgenstern–Price)
20 Piliounis

and Lagaros
2014 NN-based response surface √ √ √ LEM (Simplified Bishop)

21 Jiang et al. 2014 Hermite polynomial chaos expansion √ √ √ LEM (Morgenstern–Price)
22 Jiang et al. 2015 Hermite polynomial chaos expansion √ √ √ LEM (Simplified Bishop)
23 Li et al. 2015a Quadratic polynomial without cross terms √ √ √ √ LEM (Simplified Bishop)
24 Li and Chu 2015 Quadratic polynomial without cross terms √ √ √ LEM (Ordinary)
25 Yi et al. 2015 PSO Kriging based response surface, classical

RSM without cross terms
√ √ √ FDM

26 Kang et al. 2015 GPR-based response surface √ √ √ LEM (Simplified Bishop)
27 Kang and Li 2015 ABC-SVR response surface √ √ √ LEM (Simplified Bishop)

Note: SVM= support vector machine; ANN= artificial neural network; RBFN= radial basis function neural network; RVM= relevance vector machine; LSSVM= least square support
vectormachine; NN=neural networks; PSO=particle swarm optimization; GPR=Gaussian process regression; LEM= limit equilibriummethod; FEM= finite element method; FDM
= finite difference method. ABC-SVR = artificial bee colony algorithm optimized support vector regression.
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