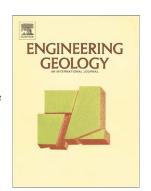
Accepted Manuscript

Darcy flux as hydrological indicator for the swelling potential of clay-sulfate rocks in tunneling

Christoph Butscher, Herbert H. Einstein, Peter Huggenberger


PII: S0013-7952(15)30038-7

DOI: doi: 10.1016/j.enggeo.2015.08.007

Reference: ENGEO 4122

To appear in: Engineering Geology

Received date: 12 December 2014 Revised date: 12 May 2015 Accepted date: 8 August 2015

Please cite this article as: Butscher, Christoph, Einstein, Herbert H., Huggenberger, Peter, Darcy flux as hydrological indicator for the swelling potential of clay-sulfate rocks in tunneling, *Engineering Geology* (2015), doi: 10.1016/j.enggeo.2015.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Darcy flux as hydrological indicator for the swelling potential of clay-sulfate rocks in tunneling

Christoph Butscher¹, Herbert H. Einstein², Peter Huggenberger³

¹ Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstrasse 12, 76131 Karlsruhe, Germany

² Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

³ University of Basel, Institute of Geology and Paleontology, Applied and Environmental Geology, Bernoullistrasse 32, 4056 Basel, Switzerland

Corresponding author: Christoph Butscher, e-mail: christoph.butscher@kit.edu, phone: +49 721 608 43414, fax: +49 721 606 279

Abstract

Swelling of clay-sulfate rocks often poses a severe threat in tunneling. It causes serious damage and produces high additional costs during tunnel construction and operation. The swelling of clay-sulfate rocks requires groundwater inflow into anhydrite-bearing layers. Therefore, the Darcy flux into anhydrite-bearing layers surrounding the tunnel is suggested as a hydrological indicator for the swelling potential. A case study from Switzerland is presented that uses numerical groundwater models to calculate the Darcy flux at the anhydrite level in different tunnel sections after tunnel excavation. The approach, which assumes that a high Darcy flux at the anhydrite level after excavation indicates a high swelling potential, is tested at the study site. The results suggest that the Darcy flux can serve as hydrological indicator for the swelling potential in tunneling. Equally important, however, is the fact that the Darcy flux depends on many parameters, all of which are uncertain. Hence, a sensitivity study is

Download English Version:

https://daneshyari.com/en/article/6447681

Download Persian Version:

https://daneshyari.com/article/6447681

<u>Daneshyari.com</u>