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H I G H L I G H T S

• A kinetic Monte Carlo model is developed to simulate the drying of a nanofluid droplet.
• A time- and radius-dependent chemical potential function is proposed.
• Branched aggregates from the drying of the nanofluid droplet are predicted.
• Particles distribution and the shrinking of the contact line are investigated.
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A B S T R A C T

The drying of sessile nanofluid droplets on a surface can form various patterns and plays important role
in micro and nano- manufacture technologies. In this paper, the kinetic Monte Carlo (KMC) approach
based on the 2D Ising model is developed to simulate the drying process of a nanofluid droplet in a cir-
cular domain. In contrast to assuming a constant chemical potential in previous models, a chemical potential
function dependent on time and the radius of the droplet is proposed. This model is used to investigate
the formation of branched nanoparticle aggregates resulting from the drying of a nanofluid droplet. The
predicted patterns from the drying droplet show a good agreement with the experiments. The distri-
bution of particles and the shrinking of the contact line during the drying process, as well as the effects
of the initial boundary chemical potential and the decrease rate of the chemical potential on the drying
process have been investigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nanofluids are new materials in the industrial production and
present some important features, including: enhanced heat trans-
port performance [1,2], high thermal conductivities at low
nanoparticle concentrations [3,4], and more stable than many or-
dinary fluids [5]. With the enhanced heat transfer properties,
nanofluids have great potential to be applied in developing highly
compact and effective heat transfer equipment [6]. In addition, the
drying of nanofluids has gained much audience nowadays due to
its important applications in painting, coating, surface patterning,
and micro- or nano-fabrication processes. During the drying process
of a nanofluid, the dispersed nanoparticles can self-assembly into
various complex structures [7–12]. The branch structure pattern was
observed in the front of the contact line of the nanofluid during
drying process [13–15]. The other structures such as coffee-ring
[16,17], networks [18], or worm-like islands were also reported

[19,20]. Numerical models have been developed to study the
behavior of the moving drying front and the deposition structures
of the dispersed nanoparticles [8,13,15,18,21,22]. The applied models
include the hydrodynamic thin film model [21,23], the dynamical-
density functional theory [24], and the KMC model [13,15,18]. In
these models, the KMC model is a very practical method to simu-
late the drying-mediated two-dimensional assembly of nanoparticles
from nanofluids [8]. It can directly show the drying process of
nanofluids and the structures formed by nanoparticles after drying.
The previous KMC models adopted different assumptions, such as
homogeneous and heterogeneous evaporation [8], full-3D model [25],
and pseudo-3D model [15], to explore the drying of thin films and
the deposition of nanoparticles. In this paper, a numerical model,
which is developed from the 2D lattice-gas KMC method [8], is used
to simulate the drying process of a sessile nanofluid droplet. In con-
trast to assuming the chemical potential as a constant, a linear
function, or a nonconstant function depending on the liquid cov-
erage in previous models [13,14,18,26], a chemical potential function
dependent on time and the radius of the droplet is proposed to con-
sider the evaporation of a macroscopic droplet with a non-negligible
thickness effect. The model is used to investigate the drying of a
sessile nanofluid droplet in a circular domain. Branched solid
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aggregates during the drying process are predicted. The distribu-
tion of particles and the shrinking of the contact line during the
drying process, as well as the effects of the initial boundary chem-
ical potential and the decreased rate of the chemical potential on
the drying process have been investigated.

2. Mathematical model

In this section, we describe the 2D lattice-gas KMC model, which
is first introduced by Rabaniet al. [8]. The model is used to predict
the self-assembly process of the nanoparticles and the dynamics
of the evaporation during the nanofluid drying.

2.1. Kinetic Monte Carlo model

The main procedures of the simulation program are shown in
Fig. 1. In the model, a circular domain instead of a shape of the
droplet is used. An empty circular domain is created based on the
size of the lattices. The radius of the domain (R) is expressed by an
integer number of cells. Then this domain is filled with the liquid
phase. In the next step, some spaces are randomly filled with the
particles. The total number of particles depends on the global par-
ticle coverage φ, to be defined in the simulation. After that, the loop
of repeating Monte Carlo steps (MCS) starts. In the Monte Carlo
model, we introduce two correspondent variables l and n, to rep-
resent the status of each cell: particle cells l n= =( )0 1, , liquid cells
l n= =( )1 0, and vapor cells l n= =( )0 0, . In the implementation, the

solvent and particles occupy single cells of the lattice. The size of
the nanoparticle is not a crucial parameter, which was discussed
in the previous studies [8,13].

In the simulation, the total number of the Monte Carlo steps is
predefined initially. On each step of the process, two possible moves
in the simulation are considered in turn [18]: (1) attempt to convert
the solvent phase from liquid to vapor (l = 1 → 0) or from vapor to
liquid (l = 0 → 1); and (2) attempt to move each nanoparticle by one
lattice space in a random lattice direction. Nanoparticles may only
move into the wet area of the lattice, that is, in a direction cur-
rently occupied by one adjacent liquid cell. This imitates the low
nanoparticle mobility on a substrate in the absence of the solvent

[27]. If the nanoparticle moves, the displaced liquid cell is posi-
tioned in the nanoparticle’s wake to preserve the solvent density.

Each solvent cell is examined in the 2-D pattern, and each attempt
is accepted with the Metropolis probability, Pacc , given by [8]:

P E k Tacc B= −( )[ ]min , exp1 Δ (1)

where ΔE is the system Hamiltonian change, which is the change
in energy associated with such a move, kB is the Boltzmann con-
stant, T is the system temperature, kBT is the thermal energy of the
system. The total system Hamiltonian value E can be calculated at
every time moment from Eq. (2) [13], and its change ΔE is the dif-
ference between the system energies after and before the affecting
moves.
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where μi is the effective chemical potential of the solvent for po-
sition i. εnn , εnl and εll are the interaction energies for adjacent sites
(i, j) filled by (nanoparticle, nanoparticle), (nanoparticle, liquid) and
(liquid, liquid), respectively. j is the index of the lattice cells adja-
cent to the ith cell, and t is the MCS number. The sums ∑

ij
are taken

for all pairs of the nearest and next-nearest cells. For the next-
nearest cells, the interaction coefficients are weighted by a distance
factor 1 2 [26], and the values of the interaction energies and the
chemical potential are nondimensionalized by the εll factor. In this
paper, all the simulations use the value of εnl to be equal to 1 5. εll ,
as discussed in Ref. [8]. However, the value of εnn is less than 1 5. εll

in this study compared with that of Vancea et al. [13] in order to
reduce the effect of particle aggregation in favor of the particle
motion driven by the drying front shrinking. In this way, it can
prevent the formation of multiple small separate dot-like islands,
and allows the particle aggregation in a larger scale [28].

2.2. The effective chemical potential

In the KMC model, the effective chemical potential μcontrols
the evaporation and condensation of the liquid [18]. We call μ as

Fig. 1. Schematics of the two-dimensional lattice-gas KMC simulation process in a circular domain.
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