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The uniformmorphology of different species of Poaceae (grass) pollen means that identification to below family
level using light microscopy is extremely challenging. Poor taxonomic resolution reduces recoverable informa-
tion from the grass pollen record, for example, species diversity and environmental preferences cannot be ex-
tracted. Recent research suggests Fourier Transform Infra-red Spectroscopy (FTIR) can be used to identify
pollen grains based on their chemical composition. Here,we present a study of twelve species fromeight subfam-
ilies of Poaceae, selected from across the phylogeny but from a relatively constrained geographical area (tropical
West Africa) to assess the feasibility of using this chemical method for identification within the Poaceae family.
We assess several spectral processing methods and use K-nearest neighbour (k-nn) analyses, with a leave-
one-out cross-validation, to generate identification success rates at different taxonomic levels. We demonstrate
we can identify grass pollen grains to subfamily level with an 80% success rate. Our success in identifying Poaceae
to subfamily level using FTIR provides an opportunity to generate high taxonomic resolution datasets in research
areas such as palaeoecology, forensics, and melissopalynology quickly and at a relatively low cost.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The correct identification of pollen grains is an important factor in
any research area that uses pollen assemblages to make inferences
about vegetation. These research areas can be as diverse as palaeoecol-
ogy (Germeraad et al., 1968; Mander and Punyasena, 2014), forensics
(Horrocks et al., 1998; Mildenhall et al., 2006) and melissopalynology
(Herrero et al., 2002; Martin, 2005), as they all share a reliance upon
the taxonomic resolution of pollen identification to maximise the accu-
racy and usefulness of their data. Looking further back into geological
time, palynological research has played a fundamental role in under-
standing plant origination and radiation (e.g. the origin and radiation
of vascular plants (Rubinstein et al., 2010), and the radiation of the an-
giosperms (Lupia et al., 1999)), and shaped our understanding of how
the terrestrial biosphere responded to mass extinction events (Looy
et al., 2001; Tschudy et al., 1984). This highly diverse group of studies
all shares a reliance upon the taxonomic resolution of pollen identifica-
tion tomaximise the accuracy and usefulness of their data. The utility of

pollen and spores as an archive becomes reduced, however, when taxo-
nomic resolution leads to a loss of information (Bush, 2002).

The Poaceae (grass) family exemplifies this problem, as it comprises
11,554 currently accepted species in 759 genera (The Plant List, 2013),
which exist across a wide climatic gradient, from Antarctica to tropical
lowland rainforest. Yet pollen grains from this family are almost indis-
tinguishable below family level using light microscopy, therefore they
are generally not classified below ‘Poaceae’ by themajority of palynolo-
gists (Fægri et al., 1989; Holst et al., 2007; Strömberg, 2011). Conse-
quently Poaceae pollens are essentially a rich yet currently
underdeveloped archive ripe for palynological research.

Extensive research over the last four decades has used a variety of
tools to determine if the identification of Poaceae pollen to below family
level is possible. This analysis has been on individual grains using: (i)
surface pattern analysis of images of pollen grains obtained through
scanning electron microscopy (SEM) (Andersen and Bertelsen, 1972;
Mander et al., 2013; Waikhom et al., 2014), (ii) detailed morphometric
analysis consideringwhole grain and poremorphology (Joly et al., 2007;
Schüler and Behling, 2010), and (iii) confocal microscopy of pollen ex-
ines (Salih et al., 1997). A success rate in identifying Poaceae pollen to
species level of 85.8% has been achieved through SEM (Mander et al.,
2013), and this technique has even allowed differentiation of cultivars
(Datta and Chaturvedi, 2004). These methods, although successful, are
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time consuming and require considerable sample preparation, laborato-
ry work, and expertise. Therefore, from a practical perspective, the ap-
plication of these techniques to palaeoecological questions has not yet
occurred.

Fourier Transform Infra-Red spectroscopy (FTIR) has recently been
used to differentiate pollen taxonomically, demonstrating it is possible
to distinguish between plant orders, and in some cases to species level
(Dell'Anna et al., 2009; Pappas et al., 2003; Zimmermann, 2016, 2010).
FTIR analysis has also been successfully used in characterising pollen
surface compounds (Pummer et al., 2013). FTIR analysis generates ab-
sorbance spectra, with bands relating to chemical bonds within specific
functional groups. The size, shape and position of these bands provides
information about the type of bonds present and their chemical envi-
ronments, which, in the case of biopolymers such as sporopollenin,
can be very complex (de Leeuw et al., 2006; Fraser et al., 2014b, 2011;
Watson et al., 2012, 2007). Interpretation of FTIR spectra relies upon
knowledge of the type of bonds likely to be present in a substance,
and how they might vary. In this study, we treat spectra statistically
and use classification algorithms to identify pollen, thus removing the
need for in-depth biogeochemical analysis.

Spectra produced by FTIR analysis are affected by a number of oper-
ational factors, such as intensity of beam, thickness of sample and thick-
ness of slide (if using a microscope enabled FTIR). Spectra may be noisy
if the sample to be scanned (and therefore aperture size) is small, or the
material is of poor quality, for instance if pollen grains are degraded.
Degradation of the samples used in this study is not expected to be sig-
nificant, althoughmay be present, as some chemical changes have been
observed over short time (hours-days) periods (Zimmermann et al.,
2015). Changes in spectra driven by degradation can, however, be
accounted for by using statistical processing techniques prior to analysis
(Zimmermann and Kohler, 2013). For example, use of algorithms such
as Savitsky-Golay smoothing can alleviate noisiness, but potentially re-
move useful information such as subtleties in shape of bands from spec-
tra if their parameters are not calibrated properly, whereas generating
first and second derivatives of spectra may result in degradation of the
signal-to-noise ratio (Brown et al., 2000; Zimmermann and Kohler,
2013). The chemical structure of sporopollenin, is known to be very sta-
ble over geological time (Fraser et al., 2012) and resistant to diagenetic
alteration (Watson et al., 2007; Fraser et al., 2014a), meaning that the
interpretation of the fossil record may benefit from the application of
this technique.

Here we show that analyses of FTIR spectra from a selection of
Poaceae taxa can be used to successfully identify pollen grains. Using a
simple nearest neighbour classification algorithm our results have
very similar levels of success when compared to much more expensive
and labour intensivemethods currently deployed, such as SEM(Mander
et al., 2013). Therefore, FTIR based analyses raise the possibility of a fur-
ther exploration of the grass pollen record.

2. Methods

2.1. Sample collection and preparation

A total of twelve grass taxa were analysed from eight subfamilies
(Table 1) across the grass phylogeny, as outlined in the latest publica-
tion by ‘The Grass Phylogeny Working Group’ (Grass Phylogeny
Working Group II, 2012). The sampling strategy employed ensured a
wide phylogenetic spread whilst also enabling analysis of lower-order
identification by sub-sampling some subfamilies, such as the
Ehrhartoideae. Poaceae pollenwas obtained from herbarium specimens
at the Royal Botanic Gardens, Kew (London, UK) by dissecting out sta-
men from individual florets. Where possible, two or more specimens
for each species were sampled, and specimens from Ghana or
neighbouring tropical West African nations were preferentially sam-
pled, to complement current palaeoecological (fossil pollen)

investigations at Lake Bosumtwi, Ghana (Miller and Gosling, 2014),
and to reduce large-scale environmental variability asmuch as possible.

2.2. Chemical analysis

The pollen was washed in acetone and allowed to air-dry on zinc-
selenide slides. Groups of two or more pollen grains clustered together
were examined using a Continuum IR-enabled microscope with a 15×
reflechromat objective lens and nitrogen-cooled MCT-A detector in
transmission mode. The microscope was linked to a Thermo Nicolet
Nexus (Thermo Fisher Scientific, Waltham, MA, USA) FTIR bench unit
at The Open University. Spectra were averaged over 256 scans per sam-
ple, and background scans were taken before each sample to alleviate
any atmospheric contributions. Visual inspection of spectra and atmo-
spheric suppression correction was conducted using OMNIC software
(Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Data processing and analysis

Average spectra were calculated from multiple replicates for every
sample (Fig. 1). These average spectra were inspected visually, and
comparisons of selected absorbance bands were compiled (after
Steemans et al., 2010) to determine potential structural drivers of the
statistical patterns observed (Table 2). The absorbance bands chosen
were based on those used by other researchers investigating sporopol-
lenin composition. Bands that do not vary between taxa are omitted
from visual inspection; for instance, the broad OH band at 3300 cm−1

is omitted, as it is present in all taxa in the same form and thus provides
no visually quantifiable classification information. The bands included
in the visual inspection and references to papers which have used
them in investigations of sporopollenin are as follows: C=C band at
3070 cm−1, (Fraser, 2008); vasCH2 and vsCH2 at 2925 cm−1 and 2850
cm−1 respectively, and vC=O at 1710 cm−1, (Fraser et al., 2012;
Watson et al., 2007); vasCH3 at 2960 cm−1, (Steemans et al., 2010);
vsCH3 at 2890 cm−1, (Fraser, 2008); C=C non-conjugated at 1660
cm−1, (Fraser et al., 2014b; Steemans et al., 2010; Zimmermann and
Kohler, 2014), OH at 1630 cm−1 (Fraser, 2008); C=C (aromatic ring
stretch) at 1500 cm−1, (Fraser et al., 2014b; Lomax et al., 2008;
Watson et al., 2007); CHn (asymmetric bending) at 1460 cm−1 and
CH3 (symmetric bending) at 1375 cm−1, (Fraser et al., 2012); C=C or
CHn at 720 cm−1, (Fraser et al., 2012; Zimmermann and Kohler, 2014).

All average spectra were z-score standardised (i.e. standardised to
zero mean and unit variance) by finding their mean amplitude,
subtracting the mean from the actual values, and dividing by the stan-
dard deviation. When no other treatments were applied, these z-score
standardised spectra are referred to as ‘Unprocessed Spectra’ (see
Fig. 2 for information on processing). These standardised spectra were
not subject to variations in signal amplitude due to variable sample
thickness (Duarte et al., 2004; Jardine et al., 2015). Standardisation of
spectra (and all other statistical manipulations) were performed in R

Table 1
Subfamily and species of grass sampled for pollen FTIR.

Subfamily Species

Bambusoideae Bambusa vulgaris Schrad.
Pharoideae Leptaspis zeylanica Nees ex Steud.
Puelioideae Puelia olyriformis (Franch.) Clayton
Ehrhartoideae Oryza sativa L.
Ehrhartoideae Oryza longistaminata A.Chev. & Roehr.
Ehrhartoideae Leersia drepanothrix Stapf.
Arundinoideae Phragmites karka (Retz.) Trin. Ex Steud
Chloridoideae Ctenium elegans Kunth
Chloridoideae Enteropogon macrostachys (A.Rich.) Munro ex Benth.
Panicoideae Pennisetum pedicellatum Trin.
Panicoideae Cenchrus setiger Vahl
Pooideae Triticum aestivum L.
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