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H I G H L I G H T S

• Constructal optimizations for multilayer insulation structures are performed.
• Minimum heat loss rate is taken as optimization objective.
• Two boundary conditions of the insulation layers are considered.
• One is convective heat transfer.
• Another is combined convective and radiative heat transfer.

A R T I C L E I N F O

Article history:
Received 7 July 2015
Accepted 28 February 2016
Available online 7 March 2016

Keywords:
Constructal theory
Multilayer insulation
Combined convective and radiative heat
transfer
Generalized thermodynamic optimization

A B S T R A C T

Constructal designs of multilayer insulation structures of a steel rolling reheating furnace wall are imple-
mented by taking minimum heat loss rate (HLR) as optimization objective. Two boundary conditions of
the insulation layers, convective heat transfer and combined convective and radiative heat transfer, are
taken into account. The optimal constructs of the insulation layers with the two boundary conditions
are obtained. The results show that for a multilayer insulation structure with convective heat transfer,
the optimal thickness of each insulation layer is proportional to the square root of the temperature dif-
ference between the furnace wall and the ambient. For a multilayer insulation structure with combined
heat transfer boundary condition, the optimal thicknesses of the multiple insulation layers increase with
the dimensionless longitudinal coordinate. The HLR of the insulation layers with optimal thicknesses is
reduced by 9.50% than that of the uniform ones, and this value decreases with the increase in dimen-
sionless inlet wall temperature. Moreover, the nonuniformity of the convective heat transfer coefficient
has an evident influence on the minimum HLR, but that of the surface emissivity is small.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As energy crisis is becoming prominent, an effective way to make
use of energy is what people chase for. Thermal insulation is an ef-
fective way to reduce the heat loss of a thermal system. Therefore,
many scholars have shown great interests in the investigations of
the thermal insulation problems, such as building enclosure struc-
tures [1–6], pipeline systems [7–11], etc.

Constructal theory [12–19] is a powerful theory for the optimal
designs of various engineering applications, and many insulation
problems [20–34] had been solved by using this theory. For the
constructal designs of insulation layers of the reheating furnaces,
Bejan [20] built the plane and cylindrical insulation layer models

of a reheating furnace wall, and optimized the distributions of the
layers with minimum heat loss rate (HLR). The results showed that
the HLR of the insulation layer with optimal thickness was reduced
by 12.5% as compared with that of the uniform one, and the heat
loss reduction of the plane insulation layer with optimal thick-
ness was larger than that of the cylindrical one. Kang et al. [21] built
a multilayer insulation model of the furnace wall with constant
temperature boundary condition, and carried out constructal op-
timizations of the insulation layers by taking minimum HLR as
optimization objective. The results showed that the heat loss of the
insulation layer with optimal distributed thicknesses was greatly
reduced compared with that of the uniform ones, and the decre-
ment of heat loss would be more obvious when the temperature
distribution of the furnace wall was convex. Moreover, they also in-
vestigated the optimal distributions of the heaters in the reheating
furnace with convective [22] and radiative [23] heat transfers by
taking minimal fuel consumption as optimization objective. Based
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on the models in Refs. [20,21] and applied constructal theory [12–19]
and entransy theory [24–29], Feng et al. [30–33] optimized the dis-
tributions of the single-layer insulation with constant temperature
boundary condition and convective and radiative boundary condi-
tion, respectively. They concluded that the optimal distributions of
the insulation layers were different from those obtained by HLR
minimizations.

For the constructal designs of insulation layers of the hot fluid
pipes, Bejan [20] built a distributed insulation layer model for a con-
vective heat transfer hot fluid pipe, and optimized the thickness of
the cylindrical insulation layer with minimum HLR. The result
showed that optimal thickness of the insulation layer was uniform
when the amount of the insulation material was fixed. Kalyon and
Sahin [34] further discussed the problem in Ref. [20] by using optimal
control theory, and the results obtained were coincided with those
obtained in Ref. [20]. Moreover, they further optimized the distri-
butions of the insulation layers of the hot fluid pipe with radiative
as well as combined heat transfer boundary conditions [35,36], and
obtained some different optimal distributions of the insulation layers.
For the constructal designs of vertical insulating walls, Lorente and
Bejan [37] optimized the internal structures of the vertical insula-
tion wall subjected to a fixed mechanical stiffness and obtained the
maximum thermal resistance of the wall. Furthermore, Xie et al.
[38,39] and Chen et al. [40] reconsidered the insulation wall model
in Ref. [37], and optimized the number of air cavities by consider-
ing heat flow, strength and wall weight simultaneously.

The constructal optimization of multilayer insulation struc-
tures with constant temperature boundary condition was carried
out in Ref. [21]. Based on the multilayer insulation model in Ref.
[21], a more actual model of multilayer insulation structures with
radiative as well as combined convective and radiative heat trans-
fer boundary conditions will be considered in this paper. Constructal
optimizations of the insulation layers of a reheating furnace wall
with the two boundary conditions will be carried out by taking
minimum HLR as optimization objective. The optimal insulation per-
formance with minimum HLR will be compared to that with average
thicknesses of the insulation layers as well as that with minimum
maximum temperature gradient. The model will be more general-
ized, and several heat transfer boundary conditions of the insulation
layers will become special cases of this paper.

2. Constructal optimization of multilayer
insulation structures

Consider a simple model of steel rolling reheating furnace wall
with multilayer insulation structures, as shown in Fig. 1 [21]. The
billet steel is heated by the high temperature gas in the inner of the
hearth, and part of heat is dissipated to the ambient (ambient tem-
perature T0) through the furnace wall. The temperature T(x) (0 ≤ x ≤ L)
of the internal furnace wall is specified. A number (N) of insula-
tion layers (thermal conductivity ki, thickness ti, i N= …1 2 3, , , , ) are
laid outside of the furnace wall to reduce heat loss from the furnace.
The length and width of the insulation layers are L and W, respec-
tively. For the simplification of the calculation, the parameters along
the third dimension (width direction) are assumed to be not varied.
In this case, the heat conduction model in the paper becomes two
dimensional, and the width of the insulation layer is fixed at unit
width, i.e., W = 1. When the thicknesses t i Ni = …( )1 2 3, , , , are much
smaller than the length of the insulation layers, the heat transfer
rate along the thickness direction is much larger than that along
the length direction. In this case, the heat transfer along the length
direction can be approximately ignored, and the heat conductions
in the insulation layers can be simplified as one dimensional [21].
The models of the multilayer insulation structures with uniform and
distributed thicknesses are shown in Fig. 1(a) and (b), respectively.

2.1. Convective heat transfer boundary condition

Consider the multilayer insulation structures with convective heat
transfer. The convective heat transfer coefficient (HTC) between the
outside insulation layer and ambient is h. To obtain the analytical
solution of the optimization result, the HTC is simply viewed as
a constant in this section [34]. For the specified total area
A i Ni = …( )1 2 3, , , , (i.e. the volume) of each insulation material,
optimal distributions of the layer thicknesses can be searched to
obtain a lower heat loss of the insulation layers.

The heat balance equation in the dx section of the insulation layers
with distributed thicknesses as shown in Fig. 1(b) is
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where Tb is the layer’s exterior surface temperature. From Eq. (1),
the exterior surface temperature and total HLR [21] of the insula-
tion layers can be, respectively, given by
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where T(x) is varied along the length direction of the insulation
layers; therefore, Tb in Eq. (2) is not uniform.

The area constraint for each insulation material is

A t dxi i

L
= ∫0

(4)

The minimum HLR of the multilayer insulation structure with
the constraint of Eq. (4) can be derived by optimizing the thick-
nesses of the insulation layers. From Eqs. (2)–(4), the corresponding
Lagrange function Φ can be defined as

Fig. 1. Model of a reheating furnace wall with multilayer insulation structures [21]:
(a) Insulation layers with uniform thicknesses (b) insulation layers with distrib-
uted thicknesses.
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