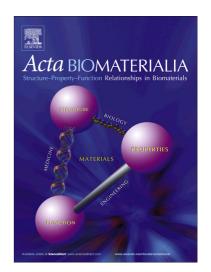
Accepted Manuscript

Review article

Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance

Kelsey M. Kennedy, Archana Bhaw-Luximon, Dhanjay Jhurry


PII: S1742-7061(16)30702-4

DOI: http://dx.doi.org/10.1016/j.actbio.2016.12.034

Reference: ACTBIO 4615

To appear in: Acta Biomaterialia

Received Date: 29 August 2016 Revised Date: 10 November 2016 Accepted Date: 15 December 2016

Please cite this article as: Kennedy, K.M., Bhaw-Luximon, A., Jhurry, D., Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance, *Acta Biomaterialia* (2016), doi: http://dx.doi.org/10.1016/j.actbio.2016.12.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance

Kelsey M. Kennedy, Archana Bhaw-Luximon, and Dhanjay Jhurry*

ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Reduit, Mauritius

*Correspondence to djhurry@uom.ac.mu

Abstract

Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the

Download English Version:

https://daneshyari.com/en/article/6449672

Download Persian Version:

https://daneshyari.com/article/6449672

<u>Daneshyari.com</u>