
Full length article
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a b s t r a c t

Tendon is composed of rope-like fascicles, bound together by interfascicular matrix (IFM). Our previous
work shows that the IFM is critical for tendon function, facilitating sliding between fascicles to allow ten-
dons to stretch. This function is particularly important in energy storing tendons, which experience extre-
mely high strains during exercise, and therefore require the capacity for considerable inter-fascicular
sliding and recoil. This capacity is not required in positional tendons. Whilst we have previously
described the quasi-static properties of the IFM, the fatigue resistance of the IFM in functionally distinct
tendons remains unknown. We therefore tested the hypothesis that fascicles and IFM in the energy stor-
ing equine superficial digital flexor tendon (SDFT) are more fatigue resistant than those in the positional
common digital extensor tendon (CDET). Fascicles and IFM from both tendon types were subjected to
cyclic fatigue testing until failure, and mechanical properties were calculated. The results demonstrated
that both fascicles and IFM from the energy storing SDFT were able to resist a greater number of cycles
before failure than those from the positional CDET. Further, SDFT fascicles and IFM exhibited less hystere-
sis over the course of testing than their counterparts in the CDET. This is the first study to assess the fati-
gue resistance of the IFM, demonstrating that IFM has a functional role within tendon and contributes
significantly to tendon mechanical properties. These data provide important advances into fully charac-
terising tendon structure-function relationships.

Statement of Significance

Understanding tendon-structure function relationships is crucial for the development of effective preven-
tative measures and treatments for tendon injury. In this study, we demonstrate for the first time that the
interfascicular matrix is able to withstand a high degree of cyclic loading, and is specialised for improved
fatigue resistance in energy storing tendons. These findings highlight the importance of the interfascic-
ular matrix in the function of energy storing tendons, and potentially provide new avenues for the devel-
opment of treatments for tendon injury which specifically target the interfascicular matrix.
� 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Energy storing tendons, such as the human Achilles and patellar
tendons, play an important role in locomotory efficiency, decreas-
ing the energetic cost associated with movement [1,2]. To enable
this function, energy storing tendons have distinct mechanical
properties, such as greater extensibility and elasticity leading to
improved energy storage and return, when compared to tendons

that are purely positional in function, such as the anterior tibialis
tendon [1,3–5]. Energy storing tendons also have superior fatigue
resistance, withstanding a greater number of loading cycles prior
to failure than positional tendons in mechanical tests using the
whole tendon [6,7].

Tendons are hierarchical fibre-composite materials, in which
collagenous units are grouped together, forming subunits of
increasing diameter [8]. At the higher hierarchical levels, the colla-
gen is interspersed with a less fibrous, highly hydrated matrix, tra-
ditionally referred to as the ground substance [9]. The largest
tendon subunit is the fascicle; with a diameter of approximately

http://dx.doi.org/10.1016/j.actbio.2016.06.012
1742-7061/� 2016 Acta Materialia Inc. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: c.thorpe@qmul.ac.uk (C.T. Thorpe).

Acta Biomaterialia 42 (2016) 308–315

Contents lists available at ScienceDirect

Acta Biomaterialia

journal homepage: www.elsevier .com/locate /ac tabiomat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.actbio.2016.06.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.actbio.2016.06.012
http://creativecommons.org/licenses/by/4.0/
mailto:c.thorpe@qmul.ac.uk
http://dx.doi.org/10.1016/j.actbio.2016.06.012
http://www.sciencedirect.com/science/journal/17427061
http://www.elsevier.com/locate/actabiomat


300 lm, fascicles are visible to the naked eye and can be isolated
by cutting longitudinally through the tendon. Fascicles are bound
together by the interfascicular matrix (IFM), which is the largest
hierarchical level of ground substance, and is also referred to as
the endotenon. The IFM is rich in glycoproteins, elastin and colla-
gens [9–11].

In order to fully understand tendon structure-function relation-
ships, it is important to characterise the specialisations that result
in enhancedenergy storage in specific tendons. Our previous studies
havedemonstrated specialisationof both fascicles and IFM inenergy
storing tendons. The additional extensibility in energy storing ten-
dons is provided by the IFM, which enables greater sliding between
adjacent fascicles, resulting in higher levels of extension in the ten-
don as a whole [3]. In addition, both fascicles and the IFM are more
elastic in energy storing tendons, demonstrating less hysteresis and
stress relaxation during cyclic loading than in positional tendons
[12,13]. We have also shown that fascicles from energy storing ten-
dons are more fatigue resistant than those from positional tendons,
both in the bovine and equine model [13,14], however no previous
studies have assessed the fatigue resistance of the IFM and how this
differs between tendons with differing functions.

In the current study, we adopted the equine model to assess the
fatigue response of functionally distinct tendons. The horse is a rel-
evant and accepted model for tendon research, as it is an athletic
species which maximises energy efficiency by storage and release
of elastic energy in the limb tendons. The predominant energy
store in the horse is the forelimb superficial digital flexor tendon
(SDFT), which has an analogous function to the Achilles tendon
[15–17]. Indeed, tendon injuries in the SDFT show a very similar
epidemiology, aetiology, and pathology to those seen in the human
Achilles tendon [16,17]. The anatomically opposing equine com-
mon digital extensor tendon (CDET) is an example of a positional
tendon, functionally comparable to the human anterior tibialis ten-
don [18]. We tested the hypothesis that the IFM in the energy stor-
ing SDFT is more fatigue resistant than the IFM in the positional
CDET, similar to the difference between the fascicles in the two
tendon types.

2. Materials and methods

2.1. Sample collection and preparation

Forelimbs, distal to the carpus, were collected from horses aged
3–7 years (n = 4) euthanased at a commercial equine abattoir, as a
by-product of the agricultural industry. Specifically, the Animal
(Scientific Procedures) Act 1986, Schedule 2, does not define collec-
tion from these sources as scientific procedures. The SDFT and
CDET were harvested from the forelimbs within 24 h of euthanasia.
Whilst it was not possible to obtain a full exercise history for the
horses, none of the tendons had clinical or macroscopic evidence
of tendon injury. Tendons were wrapped in tissue paper dampened
with phosphate buffered saline (PBS) and then in tin foil and stored
at �80 �C. On the day of testing, tendons were thawed and fasci-
cles, approximately 30 mm in length, were dissected from the
mid-metacarpal region of the tendon as previously described
(n = 6–8 per tendon) [19]. In addition, groups of two fascicles,
bound together by IFM were also dissected from the same region
(n = 6–8 per tendon) [3]. Fascicle hydration was maintained by
storing the samples on tissue paper dampened with Dulbecco’s
modified eagle medium (DMEM).

2.2. Determination of fascicle fatigue properties

Fascicle diameter was determined using a laser micrometer,
measuring continuously along a 10 mm length in the central

portion of the fascicle and taking the smallest diameter to calcu-
late cross-sectional area, assuming a circular cross section [3].
Fascicles were secured in custom made individual loading cham-
bers [20], with a grip to grip distance of 10 mm, and fascicle fati-
gue properties were determined using an Electroforce 5500
mechanical testing machine, equipped with a 22 N load cell (TA
instruments, Delaware, USA), housed within a cell culture incuba-
tor (37 �C, 20% O2, 5% CO2). A pre-load of 0.1 N was applied to
remove any slack within the samples. We have previously shown
that fascicle failure strain is more consistent between samples
than failure stress [3], Accordingly, one loading cycle to a dis-
placement of 1 mm (10% strain, equivalent to 50% of predicted
fascicle failure strain [19]) was applied to establish an appropri-
ate and consistent peak load for cyclic fatigue testing. This peak
load was subsequently applied to the fascicles in a cyclic manner
at a frequency of 1 Hz until sample failure. Load and displace-
ment data were recorded continuously throughout the test at a
frequency of 100 Hz. In addition, the maximum and minimum
load and displacement were recorded for each cycle.

2.3. Determination of IFM fatigue properties

Samples were prepared for IFM fatigue testing as previously
described [3,21]. Briefly, transverse cuts were made in the oppos-
ing ends of 2 fascicles bound together by IFM, leaving a consis-
tent IFM length of 10 mm. The intact end of each fascicle was
secured in the loading chambers and IFM fatigue properties were
determined using an Electroforce 5500 mechanical testing
machine, equipped with a 22 N load cell, housed within a cell cul-
ture incubator (37 �C, 20% O2, 5% CO2). A pre-load of 0.02 N was
applied to remove any slack within the samples. IFM failure
extension is more consistent between cycles than failure force
[3], therefore one loading cycle of 1 mm displacement was
applied, which is equivalent to 50% of the predicted failure exten-
sion [3], to find the peak load. This load was subsequently
applied to the IFM in a cyclic manner at a frequency of 1 Hz until
sample failure. Load and displacement data were recorded con-
tinuously throughout the test at a frequency of 100 Hz. In addi-
tion, the maximum and minimum load and displacement were
recorded for each cycle.

2.4. Data analysis

For each test, the number of cycles to failure was recorded. The
maximum and minimum displacement data were used to plot
creep curves to failure (Fig. 1a) and the gradient of the maximum
and minimum displacement curves during secondary creep were
calculated.

The load and displacement data were used to plot force exten-
sion curves (Fig. 1b). Hysteresis over cycles 1–10, 11–20, the mid-
dle 10 cycles and the last 10 cycles prior to failure was calculated
by dividing the area between the loading and unloading curves
(energy dissipated) by the area under the loading portion of the
curve (energy input), and expressed as a percentage. In addition,
the maximum loading and unloading stiffness was calculated for
cycle 1, cycle 10, the mid-test cycle, 10 cycles prior to failure and
the last cycle prior to failure.

Fascicle elongation was calculated at cycle 10 and at the cycle
prior to failure by subtracting the maximum extension at cycle 1
from the maximum extension in these cycles. It was not possible
to calculate IFM elongation, relative to the first cycle, as the low
forces involved in this load controlled experiment required several
cycles to fully stabilise, therefore the elongation between cycle 10
and the cycle prior to failure was calculated.
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