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The excessive use of antibiotics in food animal production has contributed to resistance in pathogenic bacteria,
thereby triggering regulations and consumer demands to limit their use. Alternatives for disease control are
therefore required that are cost-effective and compatible with intensive production. While vaccines are widely
used and effective, they are available against a minority of animal diseases, and development of novel vaccines
and other immunotherapeutics is therefore needed. Production of such proteins recombinantly in plants can pro-
vide products that are effective and safe, can be orally administeredwithminimal processing, and are easily scal-
able with a relatively low capital investment. The present report thus advocates the use of plants for producing
vaccines and antibodies to protect farm animals from diseases that have thus far beenmanagedwith antibiotics;
and highlights recent advances in product efficacy, competitiveness, and regulatory approval.
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1. The looming challenges for food animal production

The development of resistance to virtually every clinically-
important antibiotic currently available for the treatment of bacterial
infection is an important global health challenge. In the worst case the
end of the “antibiotic era” would greatly increase human mortality,
morbidity and health care costs. The primary driver for antibiotic resis-
tance is thought to be the improper or excessive use of antibiotics in
human medicine and in food animal production. Recently, the World
Health Organization, the UK government and the G8 governments
have emphasized the need for judicious use of antibiotics in agriculture
as a key element of strategies to prevent or delay the onset of antibiotic
resistance (G8 Science Ministers Statement, 2013; UK Department of
Health, 2013; World Health Organization, 2012). These initiatives,
coupled with a growing public demand for animal-based food which
is “produced without antibiotics”, will undoubtedly constrain the avail-
ability and routine practice of using antibiotics for growth promotion
and prophylaxis in livestock, poultry and fish production. Within this
context, it is imperative to devise cost-effective strategies for the inten-
sive production of livestock and fish using fewer antibiotics. Increased
use of vaccines and immunotherapeutic agents will be a cornerstone
of these strategies.

2. The need for efficacious vaccines and immunotherapeutic agents

Animal diseases have both direct costs — the immediate impact on
livestock populations and agriculture — and indirect costs, such as
mitigation or control efforts, losses in trade and other revenues, and im-
pacts on human health. Zoonotic diseases are estimated to cause 75% of
new emerging human infections, thus leading to significant morbidity
and mortality, and creating costs in labor markets due to reduced
trade and control measures. Diseases without zoonotic potential also
impact human welfare costs through instability and increases in the
cost of food. For example, the most recent estimate made in 2007 by
the World Organization for Animal Health (OIE) of the direct impact
of avian flu alone is $43 billion annually, while indirect costs are expect-
ed to be around $1.5 trillion [(The World Organisation for Animal
Health, 2007), and tables 24–25 therein].

A variety of interventions can be used to combat bacterial (and viral)
disease in animals, each with its own advantages and disadvantages
(Table 1). Of the available alternatives to antibiotics, vaccination is likely
themost widely used and effective strategy. Vaccination against viruses
can also contribute to lower therapeutic use of antibiotics by reducing
the incidence of secondary infections (Glass-Kaastra et al., 2013). Yet,
vaccines and immunotherapeutics are available for only a limited num-
ber of animal diseases; and while global sales of animal health products
in 2013 were $23 billion, only $5 billion corresponded to veterinary
vaccines (Dolcera, 2014; Health for Animals, 2014).

Among the important veterinary diseases where current vaccines
are not effective is porcine reproductive and respiratory syndrome
virus (PRRSV), one of the most economically significant swine diseases
in the world. A serious consequence of PRRSV infection is the loss of

alveolar macrophages and therefore the weakening of the respirato-
ry tract defense system, allowing secondary bacterial superinfec-
tions. Bacterial pathogens such as Mycoplasma hyopneumoniae
cause more severe disease when PRRSV is present, and for this rea-
son PRRSV outbreaks are often treated with antibiotics (Glass-
Kaastra et al., 2013). Therefore, development of effective vaccines
against viruses can lead to a reduction in antibiotic use in livestock.
Furthermore, vaccination or the use of targeted immunotherapeutic
antibodies can contribute to the maintenance of animal health,
and offer promise as a pre-slaughter treatment to reduce meat
contamination with zoonotic pathogens.

To be competitive, veterinary vaccines need to have a number of de-
sirable attributes, many of which are met using plant-based production
(Table 2). Many candidate subunit vaccines have been produced in
plants and tested in target animals with positive outcomes (Kolotilin
et al., 2014). Table 3 lists platforms that have been used for veterinary
subunit vaccine production and examples of successful trials. Key as-
pects of the advantages of plant-based versus other platforms are
discussed in the following paragraphs.

3. Attributes of plant-made pharmaceutical proteins

Compared to other platforms, plant-based production of recombi-
nant proteins offers enhanced safety, reduced capital investment in
infrastructure, and easy scale-up (Floss et al., 2007; Stoger et al.,
2014). In terms of safety, plants have the evolutionary advantage
of not being host to any prions, viruses, bacteria, or mycoplasmas
that are infective to animals or humans. Progress towards high yields
and product quality has also been achieved through advances in funda-
mental knowledge of heterologous gene expression and development
of robust expression methods such as the use of transient expression
through agro-infiltration of binary or viral vectors (Salazar-Gonzalez
et al., 2015; Vézina et al., 2009), chloroplast transformation (Jin
and Daniell, 2015), subcellular targeting and the use of suppressors
of post-transcriptional gene silencing (Alvarez et al., 2008; Alvarez
et al., 2010). Plants also provide eukaryotic-type processing and post-
translational modifications, and modified expression systems are
being developed that provide functionally-improved therapeutic
proteins especially in terms of N-glycosylation (Steinkellner and
Castilho, 2015).

Numerous bacterial and viral antigens have been expressed in plants
and tested with positive results in the target animal species (Table 3).
Similar approaches have been employed for prototype vaccines for use
in humans including influenza, hepatitis B, Norwalk virus, rotavirus,
human papillomavirus, hepatitis C and others (Gomez et al., 2009;
Hernandez et al., 2014; Landry et al., 2010; Thanavala et al., 2005;
Yusibov et al., 2011). However, for human vaccines an absolute require-
ment is high product purity, which remains challenging with plant-
based products, making veterinary vaccine production in plants more
attractive (see Section 6).

While there are no studies comparing process economics in
various production systems, the cost of unpurified therapeutic protein
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