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A B S T R A C T

Microtubules play a significant role in cell growth and functioning. Therefore inhibition of the
microtubule assemblies has emerged as one of the most promising cancer treatment strategies.
Predictive QSAR models were built on a series of selective inhibitors of the tubulin were performed by
using Associative Neural Networks (ANN). To overcome the problem of data overfitting due to the
descriptor selection, a 5-fold cross-validation with variable selection in each step of the analysis was
used. All developed QSAR models showed excellent statistics on the training (total accuracy: 0.96–0.97)
and test sets (total accuracy: 0.95–97). The models were further validated by 11 synthesized 1,3-oxazole
derivatives and all of them showed inhibitory effect on the Hep-2 cancer cell line. The most promising
compound showed inhibitory activity IC50 = 60.2 mM. In order to hypothesize their mechanism of action
the top three compounds were docked in the colchicine binding site of tubulin and showed reasonable
docking scores as well as favorable interactions with the protein.

ã 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that emergence of malignant tumors includes
uncontrollable cell proliferation. Therefore majority of the
chemotherapeutic agents affect the mitosis stage (Jordan and
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Wilson, 2004). One of the molecular targets in the human body is a
cellar protein tubulin and microtubule assemblies (microtubules)
formed by it (Kavallaris, 2010). Cytotoxic compounds such as taxol,
vinblastine, and colchicine as well as their numerous analogs
inhibit the mitosis by linking with various areas of the tubulin and
activating or inhibiting either the process of assembly of the
microtubules (colchicine, alkaloids of periwinkle) or uncontrolla-
ble polymerization of the tubulin (taxans: taxol and taxotere)
(Walsh and Goodman, 1999). Taxans due to their in vivo efficiency
are widely used for the most widespread malignancies despite of
difficulties and high cost of their synthesis (Launois et al., 2008).
More available colchicine and its analogs possessing a significantly
simpler structure are too toxic at therapeutic doses (Cocco et al.,
2010). It is therefore urgent to identify novel tubulin-binding
inhibitors with a novel mechanism of action and improved safety
profile.

A sufficiently large number of chemical compounds – tubulin
polymerization inhibitors that bind to tubulin using the colchicine
binding site were synthesized and tested recently. These com-
pounds include oxazole (Kaura et al., 2014), thiazole (Salehi et al.,
2013), and benzimidazole (Chen et al., 2011) derivatives.

Here, we report QSAR studies, molecular docking, synthesis and
anticancer activity of a set of known and novel 1,3-oxazole
derivatives.

2. Materials and methods

2.1. Experimental data and descriptor generation

The bioassay data entries in PubChem (AID:2205) correspond-
ing to the screening of anticancer activity of a very diverse set of
compounds were used to construct a random dataset (Anon.,
2015a,b,c,d,e,f,g,h). The data were uploaded into the Instant JChem
(Anon., 2015a,b,c,d,e,f,g,h) database and ranked according to Dice
Index (DI) values. All active tubulin inhibitors were included.
Inactive compounds were selected by the Kennard–Stone design
(Kennard and Stone, 1969) from the first 10,000 compounds as
ranked by the DI score in order to form the most diverse subset.
This way, the training set consisted of 1621 active and 1621 inactive
tubulin inhibitors based on bioassay AID:2205. All molecules were
converted to their standardized forms using the ChemAxon
standardizer (Anon., 2015a,b,c,d,e,f,g,h). The 2D and 3D coordi-
nates of atoms were recalculated, counterions and salts were
removed from molecular structures, molecules were neutralized,
mesomerized, and aromatized. Datasets were checked for struc-
tural duplicates. The 3D structures were designed using the
ChemAxon standardizer from the SMILES notations available for
each compound and stored in SDF format. 3200 descriptors were
calculated as the initial set of variables using DRAGON (Anon.,
2015a,b,c,d,e,f,g,h). Descriptors with values that greatly correlated
with those of other descriptors (with a correlation coefficient
�0.99) were omitted to avoid redundancy. As a result, 1314
molecular descriptors were selected.

2.2. Associative neural networks

Associative Neural Networks (ASNN) is a combination of an
ensemble of Feed-Forward Neural Networks (FFNN) with a k-
Nearest Neighbors (k-NN) method (Tetko, 2002). FFNN is a non-
linear supervised regression data fitting procedure. A traditional
FFNN represents a memory-less approach, i.e. after training, the
initial data are no longer needed and all the information necessary
for predictions is stored within the neural network weights and
architecture (Sandberg et al., 2001). The k-NN addition is method
represents a memory-based approach (Dasarathy, 1991). The k-NN

keeps in memory all the input data and their predictions are
corrected based on a local approximation of the closest neighbors.
The ASNN uses the k-NN method in the space of ensemble
residuals. All compounds are represented as vectors of neural
network predictions by the neural network ensemble. Correlation
between such vectors is used by the k-NN as a measure of distance
between the analyzed cases. Therefore, the ASNN performs the k-
NN in the space of the ensemble residuals. As a result ASNN
improves prediction by the biased correction over the FFNN
ensemble (Tetko, 2002).

The FFNN was trained by the SuperSAB algorithm (Tollenaere,
1990). The neural networks had the number of inputs equal to the
number of descriptors and five neurons in one hidden layer. There
was also a bias neuron both on the input and on hidden layers.
Weights were initialized with random numbers. ASNNs were used
with two output neurons – the target values were assigned to 1 for
active and 0 for inactive compounds. All neural networks had the
same architecture. The ASNN ensemble included M = 200 net-
works. The possibility of data over-fitting was strictly controlled by
the cross-validation techniques known as the Early Stopping over
Ensemble (ESE) (Tetko et al., 1995). More details of the algorithm
can be found in publications (Tetko et al., 1995; Tetko and Villa,
1997).

2.3. Search for an optimal descriptor set

Methods that deal with the sensitivity analysis estimate the
level of changes in the model’s output resulting from the changes
of model’s inputs. They are used to find a set of input descriptors,
which produce the most accurate output values. Pruning methods
implemented in ASSN were used as a selection tool. These methods
are very efficient in QSAR studies (R Development Core Team,
2004; LeCun et al., 1990). Pruning algorithms introduce some
measure of importance of the ASNN matrix weights by the so
called sensitivities. These algorithms work similarly to stepwise
multiple regression analysis excluding on each step one input
parameter, which is considered non-significant. At each step, the
model sensitivities to all weights and input nodes are estimated
and the descriptor corresponding to the input neuron with the
smallest sensitivities is deleted. Detailed descriptions of the used
sensitivity method can be found in earlier publications (Chauvin,
1989; Tetko et al., 1996).

To evaluate the classification ability and to separately control
the classification performance of the two classes, sensitivity (Sn),
specificity (Sp), and overall accuracy (Ac) were calculated
(Kovalishyn et al., 1998). Sensitivity is also called the true positive
rate or positive class accuracy, while specificity is also called the
true negative rate or negative class accuracy. A theoretical optimal
prediction can achieve 100% sensitivity (i.e. predict all active
molecules from the active group as active) and 100% specificity
(i.e., does not predict any molecule from the inactive group as
active).

Sn = TP/(TP + FN) (1)

Sp = TN/(TN + FP) (2)

Ac = (TP + TN)/(TP + FN + TN + FP) (3)

where TP, FP, TN and FN denote number of true positives, false
positives, true negatives and false negatives, respectively. In
general, the overall accuracy Ac is a good measure of predictive
ability of models if the number of active and inactive compounds is
roughly equal.
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