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a b s t r a c t

Protein–protein interactions play a central role in the biological processes of cells. Accurate prediction
of the interacting residues in protein–protein interactions enhances understanding of the interaction
mechanisms and enables in silico mutagenesis, which can help facilitate drug design and deepen our
understanding of the inner workings of cells. Correlations have been found among interacting residues
as a result of selection pressure to retain the interaction during evolution. In previous work, incorporation
of such correlations in the interaction profile hidden Markov models with a special decoding algorithm
(ETB-Viterbi) has led to improvement in prediction accuracy. In this work, we first demonstrated the
sub-optimality of the ETB-Viterbi algorithm, and then reformulated the optimality of decoding paths
to include correlations between interacting residues. To identify optimal decoding paths, we propose a
post-decoding re-ranking algorithm based on a genetic algorithm with simulated annealing and show
that the new method gains an increase of near 14% in prediction accuracy over the ETB-Viterbi algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Protein–protein interactions (PPI) play essential roles in many
biological processes in the cell. A central task in systems biology
is to study the cell in a holistic way, essentially by reconstructing
various biological networks including protein–protein interaction
networks. Despite the advancements in experimental technologies,
such as yeast two-hybrid (Y2H) systems and coimmunoprecipi-
tation (CoIP), for detecting PPIs (Uetz et al., 2000), the current
experimental methods are still noisy, giving inconsistent results
from different methods (Braun et al., 2009). In addition, the cost
and other limitations inherent in the experimental methods, such
as detecting transient interacting partners, have motivated devel-
opment of computational methods for predicting PPIs.

To better understand why and how two proteins interact,
it is important to identify the residues that are involved in
protein–protein and protein–ligand interaction; such knowledge
also has practical impact, such as serving as a guide in designing
mutants to modulate the interaction affinity for different purposes,
which is common in drug design. Due to the selection pres-
sure exerted on the amino acids on the interacting interface, the
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sequence segments, called domains, in which the interface resides
tend to be highly conserved during evolution. Therefore, domain
identification can be used as a first step towards detecting the
interacting interface. However, domain identification poses a chal-
lenging task itself. While highly conserved, the domain sequences
nonetheless have sustained mutations as well and therefore no
clear sequence patterns based on amino acid compositions can be
readily available for domain identification. This issue manifests in
the mismatches when sequences that contain the same domain are
aligned in a multiple sequence alignment. Hidden Markov models
(HMMs) are probabilistic models that are trained to capture both
the commonalities and sequence variations for a set of proteins,
and have been successfully applied in identifying protein domain
families. In the Pfam database, HMMs have been built for many
common protein domains and families and can be used to identify
domain occurrence for query sequences (Finn et al., 2006).

When it comes to detecting interface domains, because the
interaction sites impose strong constraints, it is important to incor-
porate these constraints into the computational methods for more
accurate identification of the domains and interacting residues.
However, many proteins have not had their structures determined
from X-ray crystallography experiments due the cost and experi-
mental difficulties, and hence lack the interaction site information
that can be derived from the structure in interacting com-
plexes. At present, the dataset of structurally resolved interacting
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complexes remains relatively small. To tackle this issue, a method
called interaction profile hidden Markov model (ipHMM) has been
developed (Friedrich et al., 2006). This new model is based on the
ordinary profile hidden Markov model (pHMM) (Eddy, 1998) but
modifies the model architecture by introducing new match states
to specifically represent residues on the interface. Trained with
interface sequences that are determined based on 3D structure of
protein complexes, the model can then be used to predict inter-
acting domains for proteins with no experimentally determined
structural information. The work of Friedrich et al. (2006) reports
improved accuracy in identifying interacting domains and interac-
ting residues when using ipHMM as compared to ordinary profile
HMMs.

However like most hidden Markov models, the ipHMMs are
not suitable for modeling long-distance correlations due to the
use of an essentially first-degree Markov chain for the hidden
states. Although in principle long-distance correlations can be
accommodated by introducing high degree Markov chains, the
computational complexity will increase significantly. On the other
hand, significant correlations among the interacting residues,
sometimes separated by dozens of amino acids in the primary
structure, have been reported (Crooks and Brenner, 2004; Gonzalez,
2009). We have previously developed a novel decoding algorithm
for HMMs to incorporate this long-distance correlation into the
path prediction (Kern et al., 2013). While this algorithm shows
significant improvement in the prediction accuracy, it is not guar-
anteed to produce the highest scoring path like the unmodified
Viterbi algorithm is. In this paper, we developed a method of
post-decoding re-ranking to find paths through ipHMM that bet-
ter capture the long-distance correlations and, as a result, further
improve prediction accuracy.

2. Method

In this section, we will first briefly review the ipHMM and ETB-
Viterbi algorithm as described in the previous work (Kern et al.,
2013) so that we can show the sub-optimality with the ETB-Viterbi
algorithm. Then we reformulate the optimality problem to include
the long-distance correlation. Lastly we present our post-decoding
re-ranking method based on a genetic algorithm with simulated
annealing.

2.1. Interaction profile hidden Markov models

Like Markov chains, hidden Markov models (HMMs) are mod-
els for generating stochastic sequences. However, unlike Markov
chains, only the observed sequence is known in an HMM, while
the underlying states that correspond to the sequence are hidden.
HMMs are useful for modeling problems where easily observed
sequences are statistically connected to underlying states which are
harder to measure (Rabiner and Juang, 1986). To represent such a
model, a directed graph is used where each node corresponds to one
of the hidden states Si (i = 1 to N). At each state, a symbol is emitted
from a predefined alphabet. The probability of emitting each sym-
bol depends on the current state and is defined as ei(x) where i is
the current state and x is the symbol emitted. After emitting each
symbol, the current state changes based on the transition param-
eters aij, which is the probability of moving from state Si to state
Sj for every directed edge in the graph. The model parameters for
a HMM can be estimated from training data using standard proce-
dures such as maximum likelihood estimation or the Baum-Welch
algorithm (Durbin et al., 1998).

HMMs were introduced into bioinformatics in the mid-1990s
for analyzing protein and DNA sequences, and have been widely
used ever since (Chen and Rost, 2002; Krogh et al., 1994; Eddy,
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Fig. 1. Architecture of the interaction profile hidden Markov model. The match
states of the classical pHMM are split into non-interacting (Mni) and interacting
(Mi) match states.

1995). In 2006, Friedrich et al. (2006) introduced a modified ver-
sion of the profile HMM, called interaction profile hidden Markov
model (ipHMM), which expands the model to include differentiat-
ing which residues are part of the protein’s interaction with other
molecules. The three state types of the pHMM, representing, for
each amino acid, whether it is an insertion, deletion, or match
when aligned to the protein family, remain in the ipHMM. How-
ever, as shown in Fig. 1, the match state type is separated into two
distinct states: a non-interacting (Mni) and an interacting match
state (Mi). This allows the model to capture statistical differences
between conserved amino acids in the protein family that are part
of the interaction, and those that are conserved but not part of the
interaction.

To be useful, an ipHMM has to be first trained, i.e., the param-
eters ei(x) and aij need to be estimated from protein sequences
known to be members of a domain family. This is achieved by
using a technique called maximum likelihood estimation and is
based on a multiple sequence alignment of the member proteins
in the domain family, incorporating the annotation of their inter-
action sites based on the X-ray crystallographic structure of the
protein complexes. All residue positions are labeled to indicate
whether they are interacting or non-interacting, which can then
be used while training the model to capture relevant statisti-
cal information to separate interacting positions from those that
are non-interacting. However, there are long-distance correlations
between these interacting positions that we believe are not suffi-
ciently captured by this model, as we will show in the following
subsections.

2.2. Long-distance correlation

A previous study on the presence of long-distance correlations
between amino acids in a protein found that the mutual informa-
tion between any two amino acids decayed quickly as the sequence
distance between them increased (Crooks and Brenner, 2004). Even
when conditioned on the secondary structure type the pair was in,
such as alpha helix or beta sheet, only a distance of about 4 was
required for any correlation to become insignificant. However if the
correlation is conditioned on pairs of amino acids at key secondary
structure positions, such as the boundaries of alpha helices and
beta sheets, a significantly stronger correlation emerges (Gonzalez,
2009).

Because the interacting domains of proteins undergo strong
selection pressure during evolution, it is reasonable to hypothe-
size that similarly to the pairs of amino acids on the boundaries
of secondary structure domains, stronger correlations may exist
between pairs of residues that are interacting compared to those
that do not interact (Pazos et al., 1997; Gonzalez et al., 2011). In
other words, the amino acids that occur at interacting residues
may not be entirely independent of the amino acids occurring at
other interacting residues in the same protein. We have previously
defined S(x, y) to measure the correlations that exist between any
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