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A B S T R A C T

De novo assembly of bacterial genomes from next-generation sequencing (NGS) data allows a reference-
free discovery of single nucleotide polymorphisms (SNP). However, substantial rates of errors in genomes
assembled by this approach remain a major barrier for the reference-free analysis of genome variations in
medically important bacteria. The aim of this report was to improve the quality of SNP identification in
bacterial genomes without closely related references. We developed a bioinformatics pipeline (SnpFilt)
that constructs an assembly using SPAdes and then removes unreliable regions based on the quality and
coverage of re-aligned reads at neighbouring regions. The performance of the pipeline was compared
against reference-based SNP calling for Illumina HiSeq, MiSeq and NextSeq reads from a range of
bacterial pathogens including Salmonella, which is one of the most common causes of food-borne disease.
The SnpFilt pipeline removed all false SNP in all test NGS datasets consisting of paired-end Illumina reads.
We also showed that for reliable and complete SNP calls, at least 40-fold coverage is required. Analysis of
bacterial isolates associated with epidemiologically confirmed outbreaks using the SnpFilt pipeline
produced results consistent with previously published findings. The SnpFilt pipeline improves the quality
of de-novo assembly and precision of SNP calling in bacterial genomes by removal of regions of the
assembly that may potentially contain assembly errors. SnpFilt is available from https://github.com/
LanLab/SnpFilt.

ã 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The development of next-generation sequencing (NGS) tech-
nologies has made rapid and high-throughput whole-genome
sequencing of microbial genomes broadly accessible to clinical
microbiology laboratories and has transformed the public health
microbiology for epidemiological typing and outbreak investiga-
tion (Dallman et al., 2015; den Bakker et al., 2014; Kohl et al., 2014).
NGS has been employed for the detection and control of
epidemiological outbreaks in clinically actionable time (Tang
and Gardy, 2014). It provides a universal solution for high-
resolution typing of pathogens and sequence data are amenable to
shared analysis between laboratories (Mardis, 2008).

However, the analysis of NGS genome data is often hampered by
the error-prone nature of these datasets (Chain et al., 2009; Tang
and Gardy, 2014). The standard approach for identifying SNPs is to
map short reads to a closely related reference assembly (Nielsen
et al., 2011). The accuracy of this method depends strongly on the
availability of the reference; there is a bias towards calling the
reference base, particularly in regions where SNPs are densely
located (Pightling et al., 2014). A commonly used reference-free
approach, based on the analysis of the structure of de-Brujin
graphs without explicitly constructing an assembly (Gardner and
Hall, 2013; Leggett and MacLean, 2014; Uricaru et al., 2015), has
similar limitations and is known to have problems when multiple,
closely located SNPs occur. An alternative approach for reference-
free identification of SNPs is to use de-novo assemblies to identify
SNPs, but the assembly of contigs using short reads is a complex
process that can introduce additional errors (Alkan et al., 2011;
Kelley and Salzberg, 2010; Phillippy et al., 2008; Ricker et al., 2012).* Corresponding author.
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Previous studies (Li, 2014; Liu et al., 2012; O'Rawe et al., 2013;
Reumers et al., 2012) have demonstrated the necessity of applying
filters on SNP discoveries by standard variant calling programs
using quality and coverage data but their applicability for
SNP-calling using de-novo assemblies is unclear. Alternatively,
existing tools that were developed for evaluating assembly and
contig quality can be employed. One of the earliest tools developed,
such as amosvalidate (Phillippy et al., 2008; Schatz et al., 2013)
allows the user to visually examine regions of the contig, but is not
easily automated and is incompatible with the output format of the
more recent assemblers. These tools also generally do not evaluate
quality per site for distinguishing true SNPs from assembly errors.
More recent software such as REAPR (Hunt et al., 2013) and ALE
(Clark et al., 2013) output a score describing the quality at each
contig site but the suitability of applying these tools for SNP-calls
remains untested.

Here, in this study, we present a pipeline for identifying SNPs in
microbial genomes using de-novo assembly, which we named
SnpFilt. We show that the choice of assembly method can heavily
influence accuracy of the SNPs called. For any choice of assembly
method, assembly errors can introduce a large number of false
SNPs. Consequently, in our pipeline, we introduce a reference-
independent filtering step to remove ambiguous regions of the
contigs before SNPs are called. That is, our pipeline can be applied
to any read dataset to obtain a set of high-confidence contigs; in
our analysis we re-align these contigs to known reference
genomes, but this is only for the purpose of obtaining for
positional information and to verify their accuracy.

To demonstrate the applicability of SnpFilt for public health
laboratory surveillance and outbreak detection, we applied the
pipeline to isolates of Salmonella enterica serovar Typhimurium,
one of the most common and widely distributed food-borne
bacterial pathogens (Flint et al., 2005). We analysed isolates from
strain SARA2 a derivative of lab strain LT2, which we sequenced
using two platforms, as well as a set of more distantly related S.
Typhimurium isolates that has previously been epidemiologically
characterised (Octavia et al., 2015). We also applied SnpFilt on
three sets of paired-end Illumina reads with fully sequenced
genomes and GC content ranging from 40 to 65%, to evaluate its
performance on a broader range of bacterial genomes.

2. Methods

2.1. SnpFilt pipeline

SnpFilt is a SNP detecting pipeline that employs a de-novo
assembly program to assemble the contigs and SNPs are detected
by re-mapping the reads to the assemblies and applying a set of
filters to identify high quality SNPs. Alignment to a reference
genome is used to obtain the base positions relative to the
reference but SNP detection is independent of the reference.

Contigs were constructed using SPAdes v3.1.0 (Bankevich et al.,
2012) with default parameters. Sequence variations relative to a
reference genome were then determined by aligning the contigs to
the reference genome using LASTZ (Harris, 2007). For each contig,
we used only the highest scoring set of non-overlapping (< 100 bp)
alignments. We re-mapped the reads to the contigs using BWA-
mem v0.7.112 (Li, 2013) with default parameters and obtained
coverage and quality data for each site using mpileup in samtools
v1.1 (Li, 2011). Variant sites were reported if they were associated
with mutations or indels in the LASTZ alignment and were not
removed due to any of the filters (F1-F6) listed below.

F1) The running mean of the read coverage, or the running
mean of any site within a neighbourhood of 600 bases (i.e. 300
bases on either side), is greater than the median + 2 median

absolute deviation (MAD) of read depth across the whole assembly.
We used the running mean to remove noise due to isolated sites
with higher coverage. It was computed by taking the mean read
depth across a window of 100 bases on both sides of the focal site.

F2) Mapping quality < 58, for any site within a neighbourhood
of 400 bases.

F3) The consensus base is supported by < 20 reads, or there is no
supporting read in either the forward or reverse direction, for any
site within a neighbourhood of 400 bases.

F4) The consensus base is supported by <10 reads in the
forward direction, for any site within a neighbourhood of 20 bases.

F5) The number of reads supporting a non-consensus base >0.3
times the number of aligned reads, for any site within a
neighbourhood of 20 bases.

F6) At least 50 bases within a window of 2000 bases have base
quality < q.thres, where q.thres is the mean-3 standard deviations
of quality scores across the whole assembly.

Filters F1–F6 have several novel aspects. Firstly, the filters
remove sites based not only on the coverage and quality of the focal
site, but also the local context of the surrounding bases to account
for dependencies introduced during the assembly process.
Secondly, cut-offs for mapping quality (F2) and base quality (F6)
differ from standard values (Li, 2014; Magi et al., 2012; Octavia
et al., 2015). These reflect the higher scores expected for reads
mapped to their own assembly, and cut-off values were empirically
chosen. Further explanation regarding the filters and cut-off values
is given in the Additional file 1

2.2. Evaluation of pipeline

To evaluate the performance of the pipeline, we applied filters
F1-F6 to a set of assembled contigs (Dataset 1, see description
below), and we applied the full SnpFilt pipeline to several sets of
paired-end Illumina reads. We included two sets of reads from an S.
Typhimurium isolate with a closely related reference strain
(Dataset 2) and three isolates, one each, from 3 different species
with fully sequenced genomes (Dataset 3) and an outbreak dataset
(Dataset 4).

For Datasets 1 and 2, the accuracy of the assemblies was
evaluated based on their consistency with SNPs reported by
mapping the reads to a closely related reference using BWA-mem
and samtools. We also imposed the standard requirements that
SNPs have base quality > = 20, at least 20 reads covering the SNP
site and that > = 70% of the reads support the SNP (Octavia et al.,
2015). We considered only SNPs in this comparison as indel-calling
is known to be unreliable (O'Rawe et al., 2013). SNPs called by both
reference-based mapping and SnpFilt are considered to be true
positives (TP), while SNPs called by SnpFilt but not mapping are
false positives (FP). SNPs called by mapping but omitted by SnpFilt
are false negatives (FN), and sites identified as non-variant by both
methods are considered to be true negatives (TN).

We measured the performance of the pipeline in terms of
sensitivity (the probability that a true SNP is called; TP/(TP + FN))
and precision (the probability that a called SNP is true; TP/(TP + FP))
(Olson et al., 2015). Note that we use precision, which conditions
on the variant call, instead of the more common metric, specificity
(TN/(TN + FP)), which conditions on whether or not the site is truly
a SNP. Because the majority of sites in the genome will be non-
variants, the number of TNs is always very large, but for SNP-
calling, a small number of FPs may have a disproportionately large
effect on downstream analysis, particularly if the isolate is closely
related to the reference. Consequently, we employ precision, which
accounts better for the small number of SNPs relative to the total
size of the genome (Davis and Goadrich, 2006).

For Dataset 3, isolates match the reference genome exactly so
all reported SNPs are known to be false. This allows us to evaluate
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