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A B S T R A C T

Amidation plays an important role in a variety of pathological processes and serious diseases like neural
dysfunction and hypertension. However, identification of protein amidation sites through traditional
experimental methods is time consuming and expensive. In this paper, we proposed a novel predictor for
Prediction of Amidation Sites (PrAS), which is the first software package for academic users. The method
incorporated four representative feature types, which are position-based features, physicochemical and
biochemical properties features, predicted structure-based features and evolutionary information
features. A novel feature selection method, positive contribution feature selection was proposed to
optimize features. PrAS achieved AUC of 0.96, accuracy of 92.1%, sensitivity of 81.2%, specificity of 94.9%
and MCC of 0.76 on the independent test set. PrAS is freely available at https://sourceforge.net/p/praspkg.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many bioactive peptides must be amidated to exhibit full
activity. In peptide hormones, amidation is a common posttrans-
lational modification (PTM) that is mediated in a two-step process
by the hydroxylase and lyase activities of the bifunctional enzyme,
peptidylglycine alpha-amidation monooxygenase (Driscoll et al.,
1999). Amidation had also been reported involved in a variety of
pathological processes such as neural dysfunction (Bousquet-
Moore et al., 2010), sleep apnea (Kuyama et al., 2009), cancer
(Dennison et al., 2009; Rocchi et al., 2001), and hypertension
(Shimosawa et al., 2000). Previous reports on the interaction of
amidated peptides with their corresponding receptors suggested
the activity of amidation to be a crucial determinant of ligand-
receptor interaction (Bradbury and Smyth, 1991; Edisom et al.,
1999; Walsh and Jefferis, 2006). Actually, amidation is linked to
preventing ionization of the peptide’s C-terminus and could render
it more hydrophobic and thus potentially better able to bind its
receptor (Walsh and Jefferis, 2006; Bignon et al., 1998). As for the
distribution of amidation activity, subsequent studies have also
demonstrated that amidation activity is widely distributed – it is

present in almost every tissue including heart, thyroid, hypothala-
mus, adrenal medulla, submandibular gland, pancreas, intestine,
bone, prostate and seminal fluid, even in serum (Bradbury and
Smyth, 1991).

One of the key points in studying amidation is to determine
amidated proteins and the corresponding sites. Current experi-
mental methods such as mass spectrometry (Kuyama et al., 2009),
radioimmunoassay (RIA) and immunoprecipitation (Yamaguchi
et al., 2007), are often labor-intensive, time-consuming and
expensive. Therefore, computational methods are required to
complement experimental methods and to better understand
amidation. Although amidation sites are the fourth most among all
PTM types calculated by the PTM Statistics Curator web server
(Khoury et al., 2011), there isn’t any avaliable software package or
website for amidation sites so far.

To address this issue, we proposed a computational method
to Predict Amidation Sites (PrAS). To extract as much informa-
tion as possible, we incorporated four feature types, consisting
of position-based features, physicochemical and biochemical
properties features, predicted structure-based features and
evolutionary information features. In order to remove the
redundancy of the features, an original feature selection
method, positive contribution feature selection (PCFS), was
further to optimize the features based on support vector
machine (SVM) classifier. We also analyzed the optimized
features from the biochemical background. The proposed
method achieved AUC of 0.96, accuracy of 92.1%, sensitivity
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of 81.2%, specificity of 94.9% and MCC of 0.76, in the
independent test set. Most importantly, PrAS fills the blank
of the research in this area and offers convenience for future
studies such as ligand-receptor interaction, function of neuro-
transmitter, and relevant pathological processes.

2. Materials and methods

2.1. Datasets

All amidation data with experimentally validated were down-
loaded from Uniprot (Version: March 2015). A total of 692 protein
sequences with amidation sites located in internal regions were
obtained, because C-terminal sites in sequences actually are seen
as the reaction products of amidation (Kolhekar et al., 1997; Cui
et al., 2013). For the next step, on one hand, a majority of
mammalian and insect peptide hormones possess alpha-amide
moiety (Merkler, 1994; Eipper and Mains, 1988) that arises from
the oxidative cleavage of Glycine-extended prohormones (Brad-
bury et al., 1982). That indicates the amide group that resembles
‘XGXX’ contributes most for amidation, where ‘X’ means any amino
acid and ‘G’ means Glycine (Wilkins et al.,1999). On the other hand,
when calculating without this limitation of mode ‘XGXX’ (Cui et al.,
2013), the identified site is strongly relevant to the amino acid that
follows behind it. For these reasons, we included only amino acid
sties followed by ‘G’ to improve the reliability by removal of query
sites that had extremely high correlation to the amino acid
immediately following it. After this step, 488 protein sequences
remained. In order to extract sequence information as convenient-
ly as possible, we removed the sequences that contain less than 21
amino acids as previous research did (Cui et al., 2013), and thus
obtained 416 sequences. If the sequences in the dataset are highly
homologous, the accuracy of prediction can be overfitted. In order
to reduce the homology, we clustered the protein sequences with a
threshold of 30% identity using BLASTClust (Alva et al., 2016). All
annotated amidation sites are regarded as positive samples, while
non-annotated amidation sites, which follows ‘XGXX’ mode, are
regarded as negative samples. One 21-residue peptide fragment for
each annotated/non-annotated amidation site was extracted. Ten
amino acids are at each side of amidation site. Finally, the dataset
contains 209 sequences with 497 amidation sites and 1834 non-
amidation sites.

We randomly selected 139 sequences as training set including
332 positive sites and 1202 negative sites, and the remaining 70
sequences as independent test set including 165 positive sites and
632 negative sites. As we can see, the ratio of positive to negative
samples was about 1:4 for both training set and independent test
set. Since we have removed redundancy of dataset using
BLASTClust with a threshold of identity 30%, training set and
the independent test set were really independent which would
avoid the overfitting of prediction performance caused by high
similar data. The datasets can be downloaded at https://
sourceforge.net/p/praspkg.

2.2. Features

2.2.1. Position-based features

2.2.1.1. K nearest neighbors (KNN) score. In order to make use of
cluster information of local sequence fragments for predicting
amidation sites, here we found a query sequence fragment’s K
nearest neighbors in both positive and negative datasets according
to sequence similarity by the following algorithm:

(1) For two local sequence fragments s1 and s2, when the
window size is 2n + 1, the distance D(s1,s2) between s1 and s2 is

defined as

Dðs1; s2Þ ¼ 1 �

Xi¼n

i¼�n

simðs1ðiÞ; s2ðiÞÞ

2n þ 1

where sim as the amino acid similarity matrix, s1(i), s2(i) are
derived from the BLOSUM62 substitution matrix (Henikoff and
Henikoff, 1992) as sim(a,b) = (M(a,b) � min(M))/(max(M) � min(M)),
where a and b are two amino acids, M is the substitution matrix
and max(M),min(M) represent the largest, smallest number in the
matrix respectively.

(2) The corresponding KNN feature is then extracted as follows:
(i) Form a set of neighbors, known as the comparison set, by
combining the positive and negative samples of the training set;
(ii) Calculate distances from the query sequences to the samples in
comparison set;(iii) Sort the neighbors by the distances and choose
the K nearest neighbors; (iv) Calculate the percentage of positive
neighbors in its K nearest neighbors as the KNN score.

In this paper, we chose K as 0.25%, 0.5% and 1% of the size of
training set and extracted three KNN features – KNN0.25%, KNN0.5%

and KNN1% for predicting amidation sites.

2.2.1.2. Terminal indicator. When the sample site is near to the
sequence terminus, it’s extremely possible that the number of
amino acids in upstream or downstream is smaller than 10 (the
window size is 21 here). In this situation, we added the extra amino
acid ‘X’ to the empty positions and attributed the terminal feature
to the sample fragment to discern if the site is near the terminus.
We defined the terminal indicator where the value 0 represents
that the query site is far away from the terminus and does not need
to be appended, and the value 1 represents that, the query site is
close to the sequence terminus and indeed needs extra ‘X’ to fill up
the deficiency of fragments of 21 amino acids.

2.3. Physicochemical and biochemical properties features

AAindex (Kawashima et al., 1999) database provides numerical
indices that describe various physicochemical and biochemical
properties of amino acids. Furthermore, using multivariate
statistical analyses, the high-dimensional attribute data in
AAindex are summarized by five multidimensional patterns of
attribute covariation that reflect polarity, secondary structure,
molecular volume, codon diversity, and electrostatic charge
(Atchley et al., 2005). Then the amino acids can be encoded
according to values associated with each summarized physico-
chemical property.

2.4. Predicted structure-based features

Here we extracted and coded 3 sub-types to represent predicted
structure-based features including predicted secondary structure
(SS), predicted disorder scores, accessible surface area (ASA)
calculated from PSIPRED (Jones, 1999), DISOPRED (Ward et al.,
2004), Scratch (Cheng et al., 2005) respectively.

2.5. Evolutionary information features

PSSM conservation score was used in combination with Gain/
Loss together to reflect the evolutionary information of a protein
sequence. The gain/loss of amino acids during evolution was
calculated based on the normalized differences between the
substitution numbers creating and removing the amino acid. And
the corresponding list is available and each amino acid could be
encoded according to values in the list (Jordan et al., 2005). In
detail, the asymptotic frequencies of the gainers (losers), to be
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