
Computational Biology and Chemistry 63 (2016) 73–82

Contents lists available at ScienceDirect

Computational Biology and Chemistry

journa l homepage: www.e lsev ier .com/ locate /compbio lchem

Research Article

Characterizing mutation–expression network relationships
in multiple cancers

Shila Ghazanfara,b,∗, Jean Yee Hwa Yanga

a School of Mathematics and Statistics at the University of Sydney, F07, The University of Sydney, NSW 2006, Australia
b Data61, CSIRO, Locked Bag 17, North Ryde, NSW 2113, Australia

a r t i c l e i n f o

Article history:
Received 18 January 2016
Accepted 1 February 2016
Available online 12 February 2016

Keywords:
Mutation
Gene expression
Protein–protein interaction network
Pan-cancer

a b s t r a c t

Background: Data made available through large cancer consortia like The Cancer Genome Atlas make for a
rich source of information to be studied across and between cancers. In recent years, network approaches
have been applied to such data in uncovering the complex interrelationships between mutational and
expression profiles, but lack direct testing for expression changes via mutation. In this pan-cancer study
we analyze mutation and gene expression information in an integrative manner by considering the
networks generated by testing for differences in expression in direct association with specific muta-
tions. We relate our findings among the 19 cancers examined to identify commonalities and differences
as well as their characteristics.
Results: Using somatic mutation and gene expression information across 19 cancers, we generated
mutation–expression networks per cancer. On evaluation we found that our generated networks were
significantly enriched for known cancer-related genes, such as skin cutaneous melanoma (p < 0.01 using
Network of Cancer Genes 4.0). Our framework identified that while different cancers contained com-
monly mutated genes, there was little concordance between associated gene expression changes among
cancers. Comparison between cancers showed a greater overlap of network nodes for cancers with higher
overall non-silent mutation load, compared to those with a lower overall non-silent mutation load.
Conclusions: This study offers a framework that explores network information through co-analysis of
somatic mutations and gene expression profiles. Our pan-cancer application of this approach suggests
that while mutations are frequently common among cancer types, the impact they have on the surround-
ing networks via gene expression changes varies. Despite this finding, there are some cancers for which
mutation-associated network behaviour appears to be similar: suggesting a potential framework for
uncovering related cancers for which similar therapeutic strategies may be applicable. Our framework
for understanding relationships among cancers has been integrated into an interactive R Shiny appli-
cation, PAn Cancer Mutation Expression Networks (PACMEN), containing dynamic and static network
visualization of the mutation–expression networks. PACMEN also features tools for further examination
of network topology characteristics among cancers.
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1. Background

It is known among the field of cancer biology that there is a
genetic basis behind the growth of cancers. This is manifested fun-
damentally through mutations in the DNA within tumour cells,
which can impact gene transcript levels potentially leading to
phenotypic changes in the cell via protein translation or other
mechanisms. Thus, it is important to characterize the relationships
between mutations in the DNA and the way in which the genes
behave, in terms of their expression within the cell.

Cancer research efforts, especially integrative studies using var-
ious -omics and external information sources have been enriched
by the growing availability of large datasets through consortia

http://dx.doi.org/10.1016/j.compbiolchem.2016.02.009
1476-9271/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compbiolchem.2016.02.009
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiolchem.2016.02.009&domain=pdf
mailto:s.ghazanfar@maths.usyd.edu.au
dx.doi.org/10.1016/j.compbiolchem.2016.02.009


74 S. Ghazanfar, J.Y.H. Yang / Computational Biology and Chemistry 63 (2016) 73–82

such as The Cancer Genome Atlas (TCGA). The availability of this
information gives unprecedented opportunity to explore these
relationships both within and between cancers. At the same time,
there is also a multitude of information available in biological
databases pertaining to protein, gene interaction and regulatory
networks. From manually curated pathway databases, e.g. KEGG
(Ogata et al., 1999) and MetaCoreTM (Ekins et al., 2007) to pri-
mary (Rolland et al., 2014; Keshava Prasad et al., 2009; Breitkreutz
et al., 2007) and secondary (Turner et al., 2010) repositories
of protein–protein interaction measured through yeast 2 hybrid
assays; there is a wealth of knowledge available for both interro-
gation and integration with computational biology methods.

However, among this host of data comes the challenge of
extracting meaningful information. Network analysis has been pre-
viously employed in the context of gene expression (Taylor et al.,
2009), identifying ‘party’ and ‘date’ hubs along a protein–protein
interaction (PPI) network, determined by differing levels of cor-
relation coexpression in genes among samples between two
conditions. In addition, methods have aimed to build networks in
silico based on gene–gene coexpression (Fuller et al., 2007), circum-
venting the use of network information based on prior knowledge.
Methods involving network approaches have uncovered insight-
ful regulatory modules in disease networks (Ideker et al., 2002;
Ma et al., 2011; Dittrich et al., 2008) using curated networks and
available data to identify subnetworks worth pursuing for further
biological analysis (Barabási et al., 2011). In sum, network methods
have aimed to shed light on interesting regions of the biological
space and have hinted towards meaningful explanations of the
phenomena observed.

In previous cancer research, mutation information has been cou-
pled with network information to identify network modules within
a particular cancer (Ciriello et al., 2012; Leiserson et al., 2013). These
tools make use of external networks such as PPI networks in order
to restrict the testing space and as a frame to then identify sub-
networks of interest. An overview of these methods and others is
available by Creixell et al. (2015).

In recent years, pan-cancer network research has come to
the forefront with the use of large-scale matrix summarization
techniques such as non-negative matrix factorization (NMF) and
clustering to identify commonalities across different cancers (Jia
et al., 2014; Hofree et al., 2013). Leiserson et al. (2015) conducted
a pan-cancer analysis by considering the mutations over multi-
ple cancers and implementing the HotNet2 algorithm to identify
significantly mutated subnetworks.

More recently methods have aimed to incorporate both gene
expression and mutation information in a network setting to
identify genes and networks of interest. For example, in a direct
interrogation of a dozen genes harbouring somatic mutations,
Gerstung et al. (2015) examined the mutation and expression
network characteristics in myelodysplastic syndromes, leading to
improved accuracy in the prediction of patient outcome. Simi-
lar studies have also been conducted in certain disease settings
(Bashashati et al., 2013). On a larger scale, more suited to high-
throughput studies, DriverNet (Bashashati et al., 2012) identifies a
set of driver genes by building bipartite graphs between mutated
genes and genes with outlying gene expression values. Similar algo-
rithms make use of a combination of mutation, gene expression and
external network information (Hou and Ma, 2014; Jia and Zhao,
2014; Paull et al., 2013). However most of these algorithms do not
analyse the data in a direct manner, and do not enable incorpora-
tion of sample-specific information such as prognosis among other
clinical variables. To this end, we introduce a framework that per-
forms direct testing, accounting for such information via covariates
introduced in linear models. We build directed networks resulting
from differing gene expression levels by partitioning via mutation,
and build bipartite graphs between mutated genes and pathways

for which pathways are significantly affected according to mutation
status in samples. This enables us to explore the potential muta-
tional basis behind gene expression changes, on a single gene and
pathway basis.

2. Materials and methods

2.1. Data acquisition

2.1.1. Mutation
Mutation information was downloaded from TCGA data portal

(https://tcga-data.nci.nih.gov/tcga/) between 14 November 2013
and 9 July 2015, listed in Supplementary Table S1. For each cancer,
non-silent mutations were identified from the full list of mutations,
using the ‘Variant Classification’ parameter in those datasets. For
each cancer dataset analyzed, a binary non-silent mutation inci-
dence matrix M was formed by setting

Mij = 1at least 1 non-silent mutation in gene i and sample j

for gene i = 1, 2, . . ., I and sample j = 1, 2, . . ., J, where 1 is the indicator
function.

2.1.2. Gene expression
Gene expression and clinical information was downloaded

directly onto R using the R package AnnotationHub (Morgan et al.)
obtaining data from Gene Expression Omnibus (GEO) submission ID
GSE62944. The gene expression data contained raw RNA-Seq read
counts obtained using the package Rsubread (Liao et al., 2013). We
converted the RNA-Seq counts to log2-CPM (counts per million)
via the voom function in the limma package. For each cancer dataset
analyzed, a continuous gene expression matrix Y was formed where
Yik indicates the expression level in sample i = 1, 2, . . ., I and gene
k = 1, 2, . . ., K.

2.2. Data processing

Sets of identified somatic mutations and gene expression data
originated from TCGA as described. A sample was retained in a
cancer cohort if both mutation and gene expression information
was available. A total number of 4443 tumour samples were ana-
lyzed from 19 different cancers, listed in Table 1. Sample sizes
ranged from 66 to 665, with a median of 207 samples. To enable
downstream differential expression analysis, genes with non-silent
mutations for fewer than 3 samples were removed, resulting in
between 26 and 18,190 genes with mutations, with a median of
4353 genes. Lowly expressed genes were removed, i.e. those with
fewer than 20 mapped reads for at least 50% of the samples. This
resulted in numbers of genes with gene expression information
ranging from 13,660 to 16,410, with a median of 15,670 genes.

2.3. Protein–protein interaction (PPI) networks

A union PPI network, denoted UPPI, was built by constructing
the union of the five PPI networks listed in Table 2, with 68,832
edges shared among 12,237 nodes. This network effectively lim-
its the search space in testing differential expression with respect
to mutation, allowing statistically significant and potentially more
biologically relevant relationships to be observed. It is entirely
feasible that genes’ expression may be affected by mutation that
are multiple steps away in the network, thus we also considered
a larger search space named UPPI2, defined by drawing edges
between nodes that share are least one interacting partner.

We compared UPPI and UPPI2 with an existing consolidation
of protein–protein interaction networks, namely HIPPIE (Schaefer
et al., 2012), using the high-confidence cut-off of 0.68 as previously
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