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e Interval analysis method is utilized for transient heat conduction.
e Convex models are utilized for transient heat conduction.

¢ [n convex models, we propose a novel convex model to quantify uncertain parameters.
e The novel convex model can partly reduce the space of temperature field response.
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Thermal protection systems (TPS) play a key role in the development of hypersonic aircrafts and the per-
formance of TPS is directly in connection with its temperature field, thus a number of analytical and
experimental studies have been conducted to study heat transfer analysis. Due to the existence of un-
certain parameters in the temperature field, it is imperative to adopt the approaches involving uncertainty
analysis to obtain reliable results. The non-probabilistic set-theoretic models, compared with the proba-
bilistic approach, only require a small amount of experimental samples to process the study of uncertainties.
Interval analysis method (IAM), classical convex model (CCM) and novel convex model (NCM) are applied
to quantify uncertain parameters in TPS and then combined with finite elemental differential equation
of transient thermal analysis to study the effects of uncertain parameters on temperature field response
by means of Taylor series expansion. Moreover, the thermal responsive bounds in both CCM and NCM
are yielded by the Lagrange multiplier method. A ceramic TPS is performed to illustrate the application
of the present method and the results show that NCM can reduce the space of temperature field re-

sponses. Besides, the non-probabilistic set-theoretic methods can serve for the design of TPS.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the atmospheric flight, the hypersonic aircraft would ex-
perience significant aerodynamic heating due to its hypersonic speed.
In order to ensure the internal structures within the operating tem-
perature range, TPS should be employed to achieve the heat
insulation effect. The strength and stability of TPS are directly in con-
nection with its temperature field, thus the thermal response analysis
of TPS has always been a hot research topic [1].

Deterministic heat transfer analysis approaches neglect the sig-
nificant effects of uncertain parameters on heat transfer analysis.
However, there exist many uncertainties associated with material
properties, physical dimensions, exterior loads, and environmen-
tal factors in the engineering practice [2]. Appropriate models have
to be utilized to deal with these uncertainties. Determining the effects
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of the uncertainties becomes essential in temperature field analy-
sis and the uncertainty of temperature responses is very important
to the design of TPSs in which even a few degrees of temperature
fluctuation may cause serious problems.

Many different approaches can be applied to uncertain propa-
gation and quantification and generally classified into three
categories: probabilistic approach, fuzzy approach and set-theoretical
approach [3]. Nowadays, the probabilistic approach, such as the
Monte Carlo method [4,5], the perturbation stochastic method [6,7],
the spectral stochastic method [8,9], and the other methods [10,11],
is designated as the most valuable tools for dealing with uncer-
tain problems in which the uncertain parameters are regarded as
random variables. Unfortunately, there is always not enough ex-
perimental data to describe and determine the probability
distribution of uncertainties in practical engineering. Thus the ap-
plication of the probabilistic approach has been confined to the above
situation [12]. Consequently, much of the research in the last two
decades has been focusing on set-theoretical approach for uncer-
tainty analysis. According to the different quantification of uncertain


mailto:guozhaopu@buaa.edu.cn
http://www.sciencedirect.com/science/journal/13594311
http://www.elsevier.com/locate/apthermeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.applthermaleng.2015.10.152&domain=pdf

Z. Deng et al. /Applied Thermal Engineering 95 (2016) 10-17 11

parameters, the set-theoretical approach can be categorized into two
groups: interval analysis method and convex model method. In the
interval method, the uncertain parameters are assumed as inter-
val variables belonging to a hyper-rectangle. In the convex method,
the uncertain parameters are assumed as convex variables belong-
ing to an ellipsoid. In recent years, there have been a large number
of research results regarding the set-theoretical methods [2,3,12-20].
The set-theoretical methods have been successfully applied to the
static displacement, dynamic response and structural reliability of
the engineering structure with uncertain-but-bounded param-
eters. However, from the overall perspective, the research on the
numerical analysis of the uncertain problem with uncertain-but-
bounded parameters is still in its preliminary stage and some
paramount issues still remain unsolved. For example, the applica-
tion of set-theoretical methods in the response analysis of thermal
field with uncertain parameters needs to be exploited.

In addition, the classical convex model is widely used and gen-
erally derived from an ellipsoid enclosing the rectangle containing
all experimental samples [20]. However, the classical convex model
may not be the optimal/smallest one and the results obtained by
the classical convex model are always conservative on the struc-
tural responses, especially some experimental points are nearly
located at the middle points of the edges of the rectangle, which
leads to increasing manufacturing costs.

As is discussed above, the purpose of this paper is to present the
set-theoretical methods (namely IAM, CCM and NCM) to quantify
the uncertain parameters and then combine them with finite
element differential equation of transient thermal analysis to study
the effects of uncertain parameters on temperature responses by
means of Taylor series expansion. Moreover, the thermal respon-
sive bounds in both CCM and NCM are yielded by the Lagrange
multiplier method.

2. Transient heat transfer problem of thermal protection
systems with uncertain-but-bounded parameters

The governing differential equation of transient thermal analy-
sis in finite element method (FEM) can be represented as follows

CT(t)+KT(t)=Q(t) (1

where, K is the conductance matrix, C is the specific heat matrix,
T is the unknown nodal temperature vector, Q is the vector of
the nodal heat flow, and a dot over a variable denotes differentia-
tion with respect to time t. The physical, material, exterior loads
and geometric properties in TPS are called structural parameters.
The structural conductance matrix, specific heat matrix and vector
of the nodal heat flow are all functions of structural parameters.

In engineering practice, uncertain parameters are often
temperature-independent variables, and are sometimes temperature-
dependent variables, especially for hypersonic aircrafts. In this section
we firstly consider the case in which transient heat transfer problem
with temperature-dependent parameters is described with the use
of set-theoretic approach. An approximate linear relationship, instead
of nonlinear relationship, is always utilized in thermal analysis with
temperature-dependent parameters by means of FEM. That is to say,
a series of polylines take the place of temperature-dependent curves.
Thus the key process of transient heat conduction is to determine
the information about points on the curves of temperature-
dependent structural parameters.

Consider now a situation in which some of the points on the
curves of temperature-dependent structural parameters are uncer-
tain variables and suppose that a;(T;) denotes the i-th structural
parameter value at T; degrees centigrade. By introducing the
temperature-dependent uncertainties @(T;)=(a;(T;)),, Eq. (1) can
be rewritten as

C(a(T))T(0)+K (a(T;)T(t)=Q(a(T;),t) (2)

Obviously, the nodal temperature vector T is also a function of
the temperature-dependent uncertainties @(T;) and can be assumed
as

T=T(a(T;).t)=T((a(T;)),.t) (3)

According to the idea of the set-theoretic approach, the
temperature-dependent uncertainties a(T;) belong to a domain I
(such as interval set I'y or convex set I'c). The theoretical solution
set of the nodal temperature vector T(a(T;)) can be obtained by
solving Eq. (2) in which the temperature-dependent uncertain vector
a(T;) assumes all possible values inside the domain I'. Thus, the
theoretical solution set of the nodal temperature vector T(a(T;)) can
be expressed as

T(a)={T(a(T))|C(a(T)))T(a(T;).t)+ K (a(T)))T(a(T;).t)
=Q(a(T)).t), aer}

The problem is to determine the narrowest interval T'(a) con-
taining all possible response vector, namely, find the upper and lower
bounds of the nodal temperature vector

Tupper = MaxX {T(@)(C(a(T;))T(a(T)), )+ K(a(T;))T(a(T)),1) = Q (a(T;), 1)}

Tiower = min {T (@)|C(a(T)T(a(T;), 1) + K (a(T)))T(a(T;), 1) =Q(a(T;). 1)}

a(Tj)er

(4)

3. Interval analysis method for transient thermal analysis
with uncertain parameters

In terms of the center point and the radius of an interval vector
in interval analysis, the nominal vector of uncertain parameters can
be written as

1srsM 1srsM

a’(T;)=(a’(Ty)),, =%(maxa(”(T )+mina®(T; )) (6)

where M is the number of experimental samples.
And the radius vector of uncertain parameters can be denoted
as

Aa(T) = (Aa(T,)), = %(maxa(’)(T]) mina®)(7;)) (7)

1sr<sM 1srsM

Thus, the uncertain parameters can be represented in the fol-
lowing form

a’(Tj)+8(T),

Based on the first-order Taylor expansion, the nodal tempera-
ture vector T(a(T;)) can be approximated as

a(T))= 5(T)eAa(T)=[-Aa(T)) Aa(T)]  (8)

T(@(T)=T(a" (1) 5(5). ) T(@(1).)+ 3, T ) a1

9)
The k-th element T,(a(T;)) in the nodal temperature vector
T(a(T;)) can be expressed as

Ti(@(Ty) =@ (T;)+ 8(Ty). ) = Tu(a*(T,). €)+ £78(T) (10)
where
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