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A B S T R A C T

In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and functional
knowledge about microbial communities supports medical and technical application such as fecal diagnostics as
well as operation of biogas plants or waste water treatment plants. Furthermore, microbial communities are
crucial for the global carbon and nitrogen cycle in soil and in the ocean. Among the methods available for
investigation of microbial communities, metaproteomics can approximate the activity of microorganisms by
investigating the protein content of a sample. Although metaproteomics is a very powerful method, issues within
the bioinformatic evaluation impede its success. In particular, construction of databases for protein identifica-
tion, grouping of redundant proteins as well as taxonomic and functional annotation pose big challenges.
Furthermore, growing amounts of data within a metaproteomics study require dedicated algorithms and soft-
ware. This review summarizes recent metaproteomics software and addresses the introduced issues in detail.

1. Introduction

Microorganisms represent 50–78% of Earth‘s total biomass
(Kallmeyer et al., 2012) and occur in all environments. Some micro-
organisms produce biomass by photosynthesis whereas others act as
composers and degrade dead biomass. Microbial species live in complex
microbial communities in which they have to compete or cooperate
with each other. Understanding the functioning of the microbial com-
munities is important, because microbial communities in the human gut
effect health (Erickson et al., 2012; Heintz-Buschart et al., 2016;
Kolmeder et al., 2016) and several technical applications such as waste
water treatment plants (Püttker et al., 2015; Wilmes et al., 2008) and
biogas plants (Abram et al., 2011; Hanreich et al., 2012) rely on the
metabolic activity of microbial communities.

Methods for the investigation of microbial communities target the
microbial cells, their genes, their transcripts, their proteins and their
metabolites (Heyer et al., 2015). Since proteins carry out most functions
in cells, including catalysis of biochemical reactions, transport and cell
structure, protein amounts correlate quite well with microbial activity

(Wilmes and Bond, 2006). The investigation of all proteins from one
species is called proteomics. In contrast metaproteomics is the study of
proteins from multiple organisms. It was introduced by Wilmes and
Bond (2006, 2004) and Rodriguez-Valera (2004). The typical meta-
proteomics workflow comprises protein extraction and purification,
tryptic digestion into peptides, protein or peptide separation and
tandem mass spectrometry (MS/MS) analysis. Proteins are identified by
comparing experimental mass spectra and theoretical mass spectra
predicted from comprehensive protein databases. For a detailed dis-
cussion about the metaproteomics workflow please refer to Hettich
et al. (2013), Becher et al. (2013), Heyer et al. (2015), Wohlbrand et al.,
(2013). Up to now most metaproteomics studies characterize the
taxonomic and functional composition of complex microbial commu-
nities in their specific environment (Abram et al., 2011; Kan et al.,
2005; Ram et al., 2005; Wilmes and Bond, 2006). A few recent studies
additionally correlated the taxonomic and functional composition with
certain environmental/process parameters or diseases (Erickson et al.,
2012; Heyer et al., 2016; Kolmeder et al., 2016). However, three issues
within bioinformatic data evaluation hampered previous
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metaproteomics studies (Muth et al., 2013).
First, metaproteomes consist of up to 1000 different species

(Schlüter et al., 2008). Due to high complexity metaproteomics data
analysis requires a greater computational effort, necessitating bigger
hard drives, more memory, more processors and more efficient algo-
rithms. A main issue is the database search against comprehensive
protein databases. Whereas handling of small protein databases below 1
GB is not critical, usage of the entire NCBI reference database requires
extended computational time and may fail due to software or hardware
limitations.

Second, identical peptides belonging to homologous proteins cause
redundant protein identification (Herbst et al., 2016). As a result
taxonomic and functional interpretation of results becomes ambiguous.
A peptide may belong to the lactate dehydrogenase (EC. 1.1.1.27)
(1.1.1.27) of different members of the genus Lactobacillus, which fer-
ment sugars to lactate. But it may also belong to some representatives of
the order Clostridiales fermenting lactate to acetate (Kohrs et al., 2014).

Third, protein identification is difficult if the taxonomic composi-
tion is unknown or protein entries are missing from protein databases.
For example the UniProt/TrEMBL database contains only proteins from
698,745 species (http://www.ebi.ac.uk/uniprot/TrEMBLstats, status
16.12.2016), but the number of microbial species on Earth is estimated
to be up to one trillion (Locey and Lennon, 2016). Thereby, already
small changes in the protein sequence between related microorganisms
have a big impact on protein identification. One mutation in every
tenth amino acid leads to completely different tryptic peptides which
hinder the identification of any peptide for the investigated protein.
Thus, researchers started to sequence metagenomes alongside meta-
proteomics studies (Ram et al., 2005; Tyson et al., 2004). Alternatively,
they use metagenomes from similar samples for protein identification.

As a consequence of these issues, standard proteomics software is
often insufficient for metaproteomics studies missing the identification
of unsequenced species or the comprehensive taxonomic and functional
description of microbial communities. Thus, researchers favor special
tools. Therefore, this review provides an overview about dedicated
metaproteomics software and bioinformatic strategies.

In addition to two previous reviews on bioinformatics in metapro-
teomics (Muth et al., 2013, 2016) we present the impact of combining
metagenomes on protein identification and address future hardware
requirements and handling of big data.

After a brief introduction current metaproteomics software tools are
discussed. Subsequently, this review illuminates the creation of protein
databases for protein identification investigating several biogas plant
samples in a use case. Then the grouping of redundant protein identi-
fications, the evaluation of taxonomic and functional results as well as
quantification in metaproteomics studies are discussed. Finally, data
storage and deployment solutions for big data as well as future chal-
lenges, perspectives and demand for metaproteomics software are
considered.

2. Status of proteomics software and latest trends

For the comprehensive bioinformatic processing of MS data dif-
ferent software tools exist. These include software for peak picking in
MS-spectra, software for protein identification via database search al-
gorithms and tools for comparison of protein expression patterns. A
comprehensive summary of all these software tools can be found in the
OMIC tools database (http://omictools.com/, retrieved: 09-02-2017,
(Henry et al., 2014)) and in several reviews (Cappadona et al., 2012;
Gonzalez-Galarza et al., 2012).

Latest trends in proteomics software are the development of pro-
teomics tool libraries such as OpenMS (Sturm et al., 2008), Compomics
(Barsnes et al., 2011) or Trans-Proteomic Pipeline (Keller and
Shteynberg, 2011). These libraries comprise software tools for each step
of the processing workflow, ranging from data management to data
analysis. Noteworthy are also webservices, such as Expasy (Gasteiger

et al., 2003), which provide a collection of small bioinformatic tools for
biochemical analyses of proteins.

Repositories for MS-data such as PRIDE are used to enable long-term
storage and to make published MS-data available to other researchers
(Vizcaino et al., 2016). In this context general formats for exchange of
MS results are necessary. Current standard in the proteomics commu-
nity are the mzIdentML format (Jones et al., 2012), mzTab format
(Griss et al., 2014) and mzML format (Martens et al., 2011).

Recent proteomics software combines several database search al-
gorithms. For example, the SeachGUI tool (Vaudel et al., 2011) enables
the parallel protein database search with eight different database search
algorithms. Further developments are software tools for improved MS-
operation and quantification. Search items for these developments are
“data independent acquisition” (Doerr, 2015), “multiple and single
reaction monitoring” (Colangelo et al., 2013) as well as “absolute
quantification” (Cappadona et al., 2012).

Within the last years many powerful software tools were developed
but their use was often restricted to a few scientific groups. Reasons
were missing maintenance or availability after funding periods ended.
Furthermore, many biological research groups lack bioinformatic skills
to set up comprehensive software workflows or client-server archi-
tectures. In some cases even the conversion of data into the required
input formats fail. In order to tackle these problems governments
started to fund the collection, maintenance and support of research
software tools. Examples are the Galaxy project (https://usegalaxy.org/
, retrieved: 09-02-2017), (Afgan et al., 2016), ELIXIR (https://www.
elixir-europe.org/, retrieved: 09-02-2017, (Crosswell and Thornton,
2012)) or de.NBI (https://www.denbi.de/, retrieved: 09-02-2017).

3. Software dedicated for metaproteomics

To address the three issues specific to metaproteomics bioinformatic
data evaluation, researchers started to develop special software tools
and workflows [Table 1, Fig. 1]. These tools apply different concepts,
which will be discussed later. Graph 2Pep/Graph2Pro (Tang et al.,
2016) and Compile (Chatterjee et al., 2016) focus on tailoring protein
databases for optimal protein identification. UniPept (Mesuere et al.,
2015), Prophane (Schneider et al., 2011), Megan CE (Huson et al.,
2016) and Pipasic (Penzlin et al., 2014) enable taxonomic analysis,
functional data evaluation and/or protein grouping. Additionally, sev-
eral groups assembled comprehensive software workflows for meta-
proteomics, e.g. Galaxy-P (Jagtap et al., 2015), MetaPro-IQ (Zhang
et al., 2016), MetaProteomeAnalyzer (Muth et al., 2015a) and others
(Heintz-Buschart et al., 2016; May et al., 2016; Tanca et al., 2013).
Among these workflows, the MPA is particularly user-friendly. It allows
the user to control the entire bioinformatic workflow via an intuitive
graphical user interface. Another noteworthy metaproteomics software
tool is MetaProSIP (Sachsenberg et al., 2015). It supports the detection
and quantification of isotope ratios for Protein-SIP experiments.

To ensure comparability of results between all these tools, standards
for data exchange are crucial (Timmins-Schiffman et al., 2017). Con-
sequentially, the Human Proteomics Standard Initiative is planning to
extend the proteomics mzIdentML format in order to support meta-
proteomics data. Version 1.2.0 of the mzIdentML format (Jones et al.,
2012) will support the representation of redundant protein groups
(http://www.psidev.info/mzidentml, retrieved: 09-02-2017).

Another often neglected aspect is the reproducibility of results using
different metaproteomics software tools. So far, only Tanca et al. (2013)
tested their complete metaproteomics workflow for a defined mixed
culture of nine different microorganisms. A comparison where multiple
research groups evaluate an identical sample would also be desirable.

4. Construction of user databases for protein identification

Protein database selection affects the number of identified proteins
as well as the identified taxonomies and identification increases. In
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