Journal of Biotechnology 261 (2017) 157-168

journal homepage: www.elsevier.com/locate/jbiotec

Contents lists available at ScienceDirect

Journal of Biotechnology

g

Journal of

BIOTECHNOLOGY

The SeqAn C+ + template library for efficient sequence analysis: A resource

for programmers™

@ CrossMark

Knut Reinert™”, Temesgen Hailemariam Dadi®, Marcel Ehrhardt®, Hannes Hauswedell®,
Svenja Mehringer®, René Rahn®, Jongkyu Kim”, Christopher Pockrandt”, Jérg Winkler”,

Enrico Siragusa®, Gianvito Urgese’, David Weese®

@ Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
® Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany

€ IBM Watson Research, Yorktown Heights, NY, USA
d Department of Control and Computer Engineering, Politecnico di Torino, Italy
€ SAP Innovation Center, Potsdam, Germany

ARTICLE INFO ABSTRACT

Background: The use of novel algorithmic techniques is pivotal to many important problems in life science. For
example the sequencing of the human genome (Venter et al., 2001) would not have been possible without
advanced assembly algorithms and the development of practical BWT based read mappers have been instru-
mental for NGS analysis. However, owing to the high speed of technological progress and the urgent need for
bioinformatics tools, there was a widening gap between state-of-the-art algorithmic techniques and the actual
algorithmic components of tools that are in widespread use. We previously addressed this by introducing the
SeqAn library of efficient data types and algorithms in 2008 (Déring et al., 2008).

Results: The SeqAn library has matured considerably since its first publication 9 years ago. In this article we
review its status as an established resource for programmers in the field of sequence analysis and its con-
tributions to many analysis tools.

Conclusions: We anticipate that SeqAn will continue to be a valuable resource, especially since it started to

Keywords:

NGS analysis
Software libraries
C++

Data structures

actively support various hardware acceleration techniques in a systematic manner.

1. Introduction

The analysis of biological sequences is at the core of computational
biology. Advances in biotechnology have driven the development. of
many successful algorithms (e.g., Myers’ bit-vector search algorithm
Myers, 1999, BLAST Altschul et al., 1990) and data structures (e.g.,
suffix arrays Abouelhoda et al., 2002, g-gram based string indices, FM-
indices Ferragina and Manzini, 2000) over the last 20 years. The as-
semblies of large eukaryotic genomes like Drosophila melanogaster
(Adams et al., 2000), human (Venter et al., 2001), and mouse (Mural
et al., 2002) are prime examples where algorithm research was suc-
cessfully applied to advance biological knowledge. However, with en-
tire genomes at hand, large scale analysis algorithms that require
considerable computing resources are becoming increasingly important
and so do their implementations as efficient tools. Although these tools
use slightly different algorithms, nearly all of them require some basic

* SeqAn is supported in the CIBI as part of the de.NBI network.
* Corresponding author.
E-mail address: knut.reinert@fu-berlin.de (K. Reinert).

http://dx.doi.org/10.1016/j.jbiotec.2017.07.017

Received 26 February 2017; Received in revised form 17 July 2017; Accepted 19 July 2017

Available online 06 September 2017

algorithmic components, like string indices, string searches, or align-
ments.

It is non-trivial to program efficient implementations of these
components, especially if vectorization and multi-threading becomes
more and more mandatory. This leads in practice often to the use of
suboptimal data types and ad-hoc algorithms or the analysis is con-
ducted by stringing together standalone tools. Both approaches may be
suitable at times, but it would clearly be much more desirable to use an
integrated library of state-of-the-art components that use modern
hardware. Those components can be combined in various ways, either
to develop new applications or to compare alternative implementations.
Also, relying on a software library cuts down development time and
ensures correctness and compatibility.

We previously addressed this by introducing the SeqAn library of
efficient data types and algorithms in 2008 (Déring et al., 2008). Since
then, SeqAn has matured considerably and is currently being supported

0168-1656/ © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/01681656
http://www.elsevier.com/locate/jbiotec
http://dx.doi.org/10.1016/j.jbiotec.2017.07.017
http://dx.doi.org/10.1016/j.jbiotec.2017.07.017
mailto:knut.reinert@fu-berlin.de
http://dx.doi.org/10.1016/j.jbiotec.2017.07.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiotec.2017.07.017&domain=pdf

K. Reinert et al.

by the de.NBI network for bioinformatics infrastructure as part of the
CIBI (Center for Integrative Bloinformatics). In this article we review its
status as an established resource for programmers in the field of se-
quence analysis and its contributions to many analysis tools.

2. Material and methods

The SeqAn library was first published in 2008 and designed with
certain goals in mind, namely to promote (1) high performance of the
provided algorithmic components, (2) simplicity and usability, (3) gen-
erality of data types and core algorithms, (4) the definition of special
refinements of generic classes of algorithms, (5) the extensibility of the
library and easy integration with other libraries.

2.1. Design and content of SeqAn

The SeqAn library currently consists of around 175,000 lines of code
which are split into 47 modules of varying sizes. SeqAn was im-
plemented in C+ +, a multi-paradigm high level programming lan-
guage, and is at the time of writing this article available in version 2.3.
The key concepts that are used in SeqAn are algorithm-oriented pro-
gramming (Musser and Stepanov, 1994), generic programming using
templates and template meta-programming, and partial template speciali-
zation as a form of polymorphism. We also make use of tag dispatching to
select the most efficient algorithm for a certain task at compile time.
The reasoning and implementation details are covered in Doring et al.
(2008), and have remained largely unchanged for SeqAn 2.x.

The core of the SeqAn project is the SeqAn library, but under the
umbrella of the project there are also support utilities including a
custom documentation system modeled on doxygen (van Heesch,
2008), a custom test system and a selection of applications that rely
heavily on the library (more on these later). For practical reasons, we
will only focus on a subset of the modules and give the reader an
overview of the extensive content of SeqAn.

align, align *, score. The align modules offer all functionality to
perform the many different types of pairwise alignments that are useful
in sequence analysis. For example they provide two data structures to
efficiently incorporate gaps into the underlying sequence: ArrayGaps
and AnchorGaps. While ArrayGaps are efficient for linear access
patterns, AnchorGaps have a better runtime complexity for random
access patterns, because they can employ binary search for the lookup.
In Listing 1 we show how to compute a standard pairwise global
alignment using ArrayGaps as the gap structure of choice.

Our sequence library also implements many adaptions of the ori-
ginal dynamic programming algorithms among the default pairwise
alignments. For example, we have implementations for split break point
calculation (Emde et al., 2012a,b; Holtgrewe et al., 2015a,b), seed ex-
tensions using x-drop with affine gap costs (Hauswedell et al., 2014a,b),
banded chain alignment, a new gap model called Dynamic Gap Selector
(Urgese et al., 2014) and many more.

In addition to the sequential one-to-one interface we also im-
plemented a vectorized many-to-many pairwise alignment interface,
which uses extended instruction sets of modern CPU architectures to
speed-up the computation of many pairwise sequence alignments (see
Section 3.1).

argparse. SeqAn offers a generic argument parser and option
handler that supports convenient access to the command line para-
meters. The arg parse module makes it easy to define, restrict and re-
trieve any command line input while remaining flexible for individual
needs. A well formatted help page is automatically generated, providing
a clear and common interface to all SeqAn based applications.

Since SeqAn version 2.0.0, the argument parser is able to export
interface descriptor files in an XML based format, that allow seamless
integration of all applications into workflow systems like KNIME
(Berthold et al., 2007) or Galaxy (Afgan et al., 2016) (see Section 2.2).
Recently, we also introduced a mechanism to inform our users and

Journal of Biotechnology 261 (2017) 157-168

developers whenever the library or one of our registered applications
can be updated to a newer version (see Section 2.2).

blast. The newly introduced blast module offers e-value statistics
based on official NCBI source code (Camacho et al., 2009), as well as
support for the most commonly used blast output formats, including
tab-separated output and full report.

index. SeqAn also provides an indexing module offering numerous
string indices for arbitrary alphabets such as (enhanced) suffix arrays,
FM indices, lazy suffix trees or g-gram indices. This includes fast and
practical implementations of unidirectional and bidirectional FM in-
dices, also the first and currently only openly available implementation
of a constant-time bidirectional FM index (Pockrandt et al., 2017). For
more details, see the results section. Listing 2 demonstrates an offline-
search with the FM-Index in SeqAn.

journaled string tree. The journaled string tree is a data structure
suitable for streaming over a set of referentially compressed sequences
and is applied in the field of compressive genomics (Marschall et al.,
2016). It works generically for all algorithms, whose state depends on a
sequence context, i.e. a finite number of contiguous characters (Rahn
et al., 2014).

modifier. In addition to the many container types that SeqAn pro-
vides, it also offers so called modifiers which are what is now com-
monly referred to as a view in C+ + terminology — a light-weight data
structure that behaves like a container, but does not store the data.
Instead it performs a transformation “on-the-fly” during access. An in-
tuitive biological example is the reverse complement modifier that
appears like the reverse complement of a DNA sequence without
copying the actual string data.

stream. The stream module is the basis for all other I/O modules. It
provides a stream abstraction on top of STL stream buffers with built-in
support for transparent (de-)compression with GZIP and BZIP2 (Gailly
and Adler, 2003; Seward, 1996) if the corresponding libraries are pre-
sent on the system. Consequently, all I/O done through SeqAn inter-
faces has automatic support for reading/writing compressed versions of
the corresponding files. This module has been completely rewritten for
SeqAn 2 and now profits from simpler interfaces, better performance
and improved error handling via exceptions.

seq io, gffio, bamio, raio, vcfio. Sequence I/0 is part of most
bioinformatics applications and SeqAn supports many popular formats
like fasta, fastq (Cock et al., 2010) and genbank, GFF, VCF SAM, BAM
and certain RNA formats. The bam_io module contains a full im-
plementation of the SAM and BAM formats, independent of SAMTOOLS
and HTSLIB (Li et al., 2009). Listing 3 demonstrates a simple bam-to-
sam converter implemented in SeqAn. The listing reads in a BAM file
and displays its content on the standard output. A prominent change in
SeqAn 2 is the addition of a highly parallel decompressor for BGZF so
that our performance in reading and parsing BAM files is significantly
higher than in any other implementation. Comparisons with other im-
plementations are available in the results Section 3.3. In SeqAn 2 SAM
and BAM files can also be treated as regular sequence input files. This is
useful in case the original sequence files are no longer available or if
BAM is preferred as storage for its compression. The VCF module
contains functionality to read and write files in VCF format (Danecek
et al., 2011). We also plan to add BCF format in the near future.

Files for RNA may contain structural information of a sequence or
alignment. This module supports /O for common RNA structure for-
mats, as there are Connect, Dot-bracket, Vienna, Bpseq, and extended
Bpseq for sequences and Stockholm for alignments. We created the
extension of Bpseq to offer a format that contains multiple base pair
probabilities of sequence interactions, which can be gained from ex-
periments or statistical methods.

sequence, sequence_journaled. This module contains the wide range of
generic containers, including std::vector-like strings, fixed-size arrays,
external strings and bit-compressed strings. External strings behave just
like regular containers but use the hard disk as storage and keep only a
small fraction of the sequence in memory. This is e.g. useful if the



Download English Version:

https://daneshyari.com/en/article/6451856

Download Persian Version:

https://daneshyari.com/article/6451856

Daneshyari.com


https://daneshyari.com/en/article/6451856
https://daneshyari.com/article/6451856
https://daneshyari.com

