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A B S T R A C T

The common cofactors ATP/ADP, NAD(P)(H), and acetyl-CoA/CoA are indispensable participants in biochem-
ical reactions in industrial microbes. To systematically explore the effects of these cofactors on cell growth and
metabolic phenotypes, the first genome-scale cofactor metabolic model, icmNX6434, including 6434 genes,
1782 metabolites, and 6877 reactions, was constructed from 14 genome-scale metabolic models of 14 industrial
strains. The origin, consumption, and interactions of these common cofactors in microbial cells were elucidated
by the icmNX6434 model, and they played important roles in cell growth. The essential cofactor modules
contained 2480 genes and 2948 reactions; therefore, improving cofactor biosynthesis, directing these cofactors
into essential metabolic pathways, as well as avoiding cofactor utilization during byproduct biosynthesis and
futile cycles, are three ways to increase cell growth. The effects of these common cofactors on the distribution
and rate of the carbon flux in four universal modes, as well as an optimized metabolic flux, could be obtained by
manipulating cofactor availability and balance. Significant changes in the ATP, NAD(H), NADP(H), or acetyl-
CoA concentrations triggered relevant metabolic responses to acidic, oxidative, heat, and osmotic stress.
Globally, the model icmNX6434 provides a comprehensive platform to elucidate the physiological effects of
these cofactors on cell growth, metabolic flux, and industrial robustness. Moreover, the results of this study are a
further example of using a consensus genome-scale metabolic model to increase our understanding of key
biological processes.

1. Introduction

According to http://www.ncbi.nlm.nih.gov/genome/browse/, 2330
microbial genome sequences have been completed, and the sequencing
of 7556 microbial genomes is in progress. The increasing number of
genome sequences has increased the amount of high-throughput data
and biological knowledge. By combining omics data and laboratory-
derived data, genome-scale metabolic models (GSMMs) have become
very useful platforms and tools for understanding microbial physiology
(Liu et al., 2010; Oberhardt et al., 2009), including understanding the
diversity of organism-specific knowledge (Herrgard et al., 2008; Thiele
et al., 2013), comparing the similarities and differences of microbes in
terms of their phylogenetic distance (Oberhardt et al., 2011), resolving
the metabolic characteristics of microbes with a similar industrial usage
(Papini et al., 2012), and exploring the relationship between micro-
organisms (Stolyar et al., 2007; Ye et al., 2014). One hundred and sixty-
nine GSMMs involving 116 microorganisms have been published since

1999, 21.3% of which were eukaryotic metabolic models and 78.7% of
which were prokaryotic metabolic models. Although much progress
regarding GSMMs has been achieved by modeling highly characterized
organisms, such as Escherichia coli (Carrera et al., 2014; McCloskey
et al., 2013) and Saccharomyces cerevisiae (Kim et al., 2012), the unique
characteristics of GSMMs from lesser studied organisms make them
more suitable for specific applications. Therefore, how to use GSMMs to
decipher key biological issues at the systems level remains a major
challenge.

A key biological issue is the metabolism of cofactors and its role in
biological systems (Broderick, 2001). Cofactors can act as substrates,
products, and/or catalysts of biochemical reactions, and they serve as
the carriers of redox, electron, energy, and/or functional groups in
anabolic and catabolic reactions. Cofactor engineering, an important
branch of metabolic engineering, is accomplished mainly by changing
the intracellular cofactor form and levels to manipulate metabolic
fluxes for a particular metabolite or metabolic network. Such strategies
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include: (i) adding substrates with different oxidation potentials,
activators, inhibitors, and/or competitors of coenzymes, precursors
for cofactor biosynthesis, and cofactor structural analogs (Ji et al.,
2011; Liu et al., 2006a; Liu et al., 2006b); (ii) overexpressing, deleting,
or reducing the cofactor-related reaction(s) in the biosynthetic and
degradation pathways of target products (Dulermo and Nicaud, 2011);
(iii) maintaining cofactor balance in the precursor supply and product
formation pathways (Du et al., 2012; Feng and Zhao, 2013; Ghosh
et al., 2011; van Rossum et al., 2016; Zhuang et al., 2013); (iv)
constructing heterologous regeneration pathways of cofactors (Han
et al., 2013); (v) controlling cofactor levels by converting between
different cofactors (Gameiro et al., 2013); (vi) eliminating redundant
cofactor reactions (Tang et al., 2013); and (vii) optimizing cofactor
specificity in oxidation-reduction reactions (Hoelsch et al., 2013).
However, those engineering strategies did not always achieve the
expect results, and some of them decreased cellular fitness and were
accompanied by metabolic stress. These detrimental effects occurred
because the influence of cofactors on cellular metabolism tends to be
complicated and comprehensive, and the metabolism and behavior of
cofactors during fermentation were less well known. Therefore, it is
necessary to understand the origin, consumption, interaction, and
function of common cofactors in microorganisms. If we have a clear
understanding of the metabolic pattern of common cofactors, it will be
possible to develop more efficient strategies to enhance the production
of target metabolites and to improve the economic efficiency of
industrial biotechnology applications.

Fortunately, the number of GSMMs is increasing rapidly, and their
quality is improving as well. If the GSMMs from 116 microorganisms
were used to construct a consensus metabolic model, the resulting
model should include 115,731 genes, 7570 metabolites, and 24,312
biochemical reactions. We believe that this will provide a systems level
platform for understanding the metabolic characteristics of common
cofactors in microorganisms. These highly-curated GSMMs are the basis
for constructing the consensus platform. Besides, integrating approach
required re-annotating cofactor-related gene-protein-reaction associa-
tions for the comprehensiveness, unifying and refining all the chemical
entities for the consistency, and filling metabolic gaps for the con-
nectivity and functionality. Based on these, we constructed the first
genome-scale cofactor metabolic model, icmNX6434, which includes
the cofactors ATP/ADP, NADH/NAD, NADPH/NADP, and acetyl-CoA/
CoA. Using the icmNX6434 model, we determined the production,
consumption, and interactions of these common cofactors.
Furthermore, the physiological effects of these cofactors on cell growth,
carbon flux, and industrial robustness were highlighted.

2. Materials and methods

2.1. Choice of organisms

The model microorganisms E. coli, Bacillus subtilis, S. cerevisiae and
Aspergillus niger were considered first. Then, producers of some typical
fermentation products, including various organic acids, alcohols,
ketones, lipids, amino acids, vitamins, antibiotics, and other primary
and secondary metabolites were included. The chosen seven prokar-
yotic and seven eukaryotic microorganisms were all heterotrophic and
included obligate anaerobes, facultative anaerobes, and aerobes.

2.2. Model construction

Construction of metabolic cofactor models generally includes three
steps. In the first step, a basic skeleton of metabolic cofactor models was
formed from metabolic cofactor subnetworks in the 14 organism-
specific GSMMs, and new gene-protein reaction relations were acquired
by KEGG Automatic Annotation Server annotation (Moriya et al.,
2007). Moreover, these newly annotated genes and original genes
served as the local libraries for BLASTP searches with a filter identity

≥40%, match lengths ≥70% of the length of both the subject and
query sequences, and an e-value ≤1 × 10−5 for prokaryotes and
≤1 × 10−30 for eukaryotes. Transport reactions were annotated and
classified from the TCDB. In the second step, a unified form of the
model contents was made as follows. (i) Metabolites were marked with
entries from the public database KEEG compounds, Chemical Entries of
Biological Interest, the PubChem Compound Database, the SEED
database, and ChemSpider. (ii) Reactions were normalized by our in-
house script after deleting water, hydrogen, and coefficients of parti-
cipants. In addition, reaction compartments were predicted by the
Covariance Estimation and Learning through Likelihood Optimization
(Yu et al., 2006) and WoLF PSORT (Horton et al., 2007) algorithms, and
the reaction direction was determined, in turn, from the original
GSMMs, MetaCyc (Caspi et al., 2014), and Biopath (Reitz et al.,
2004). (iii) Metabolic subsystems that were not in accordance in
different GSMMs were modified according to the KEGG pathway. In
the third step, the functional connectivity of the cofactor models was
considered from various perspectives: (i) their own biomass equations
for eukaryotic, Gram-positive, and Gram-negative microorganisms
should contain the relevant biomass components of as many of the 14
microorganisms as possible; (ii) non-cofactor reactions in the reduced
models of the three major types of microbes were used to fill metabolic
gaps; and (iii) the in silico growth of the three major types of microbial
cofactor models was simulated as constraints of the minimal synthetic
medium. Steps (ii) and (iii) formed an iterative debug until the three
major types of microbial cofactor models could support their own
biomass synthesis.

2.3. Simulation constraints

The effects of the cofactors on cell growth in minimal synthetic
medium were simulated using three major types of microbial cofactor
models, with glucose as the carbon source and without considering
genetic characteristics. The effects of the cofactors on metabolic
phenotypes were simulated using three major types of microbial
cofactor models with genetic characteristics under reasonable con-
straints of the fermentation parameters in the organism-specific
GSMMs. These fitted fermentation parameters included mainly: for C.
beijerinckii, the specific growth rate (μ), the glucose uptake rate, acetate
production (consumption) rate, and butyrate, butanol, and acetone
production rates in the early growth stages (1 h), the acidogenesis
phase (3 h), the logarithmic growth phase (7 h), and the solventogen-
esis phase (18 h) (Shi and Blaschek, 2008); for Candida glabrata, μ, the
glucose uptake rate, ethanol, glycerol, and carbon dioxide production
rates at the maximum cell growth under 40%–50% dissolved oxygen
(Hua et al., 2001); for Y. lipolytica, μ, citrate and lipid production rates
of 11 sampling points using glucose as the carbon source (Morin et al.,
2011), and μ, citrate, and isocitrate production rates, as well as
triacylglycerol consumption rates, during the growth phase (6 h),
transition phase (13 h), and nitrogen limitation phase (23 h) using
waste oil as the carbon source (Liu et al., 2015). These cell growth rates
were changed to constraints when simulating metabolite production.

2.4. Modeling methods

Cofactor-related concepts in the icmNX6434 model were introduced
as follows. (i) The definition of the cofactor current was referred to as
the metabolite turnover rate (Chung and Lee, 2009), and it was
calculated by the reaction flux of the cofactor reaction multiplied by
the stoichiometric coefficients in each reaction; the coefficients were
negative if the cofactor was a reactant and vice versa. (ii) The
accumulation of cofactors was equal to the sum of the cofactor current
in each reaction. (iii) The production and consumption of cofactors
were investigated in both the thermodynamic direction and the flow
direction of the reactions using 14 organism-specific genetic con-
straints. The synthetic reaction shared by more than 10 organism-
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