Applied Thermal Engineering 87 (2015) 505-518

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research paper

An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock

APPLIED THERMAL ENGINEERING

S. Rasoul Asaee ^{a, *}, V. Ismet Ugursal ^a, Ian Beausoleil-Morrison ^b

^a Department of Mechanical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada ^b Sustainable Building Energy Systems, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

HIGHLIGHTS

• Techno-economic evaluation ICE cogeneration systems for Canadian housing is reported.

• ICE cogeneration retrofit could yield 13% annual energy savings in Canadian housing.

• Annual GHG emissions of Canadian housing could decrease by 35% with ICE cogeneration.

• But, in some provinces, GHG emissions would increase as a result of ICE cogeneration.

ARTICLE INFO

Article history: Received 10 March 2015 Accepted 13 May 2015 Available online 22 May 2015

Keywords: Internal combustion engine based cogeneration Residential energy consumption Residential greenhouse gas emissions Canadian housing stock Economic analysis

ABSTRACT

This study provides a techno-economic evaluation of retrofitting internal combustion engine (ICE) based cogeneration systems in the Canadian housing stock (CHS). The study was conducted using the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM). CHREM includes close to 17,000 unique house files that are statistically representative of the Canadian housing stock. The cogeneration system performance was evaluated using a high resolution integrated building performance simulation software. It is assumed that the ICE cogeneration system is retrofitted into all houses that currently use a central space heating system and have a suitable basement or crawl space. The GHG emission intensity factor associated with marginal electricity generation in each province is used to estimate the annual GHG emissions reduction due to the cogeneration system retrofit. The results show that cogeneration retrofit yields 13% energy savings in the CHS. While the annual GHG emissions would increase in some provinces due to cogeneration retrofits, the total GHG emissions of the CHS would be reduced by 35%. The economic analysis indicates that ICE cogeneration system retrofits may provide an economically feasible opportunity to approach net/nearly zero energy status for existing Canadian houses.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Energy use in Canada increased by 22.3 percent between 1990 and 2010. According to the Office of Energy Efficiency (OEE), in 2010 Canadian households were responsible for 16 percent of the total national energy use and 14 percent of the greenhouse gas (GHG)

E-mail address: asaee@dal.ca (S.R. Asaee).

http://dx.doi.org/10.1016/j.applthermaleng.2015.05.031 1359-4311/© 2015 Elsevier Ltd. All rights reserved. emissions, and spent \$26.3 billion on their energy needs [1]. Of the total energy use in the Canadian residential sector, 80 percent is associated with space and domestic hot water (DHW) heating and 18 percent is for appliances and lighting [1]. Thus, there is increasing interest to reduce the energy consumption and associated GHG emissions of the Canadian housing stock by retrofitting individual houses and communities with advanced and renewable energy options to approach or achieve net-zero energy (NZE) status. To facilitate a national scale research effort in identifying feasible technologies and paths to approach or achieve NZE status, the Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) initiative was recently established [2].

^{*} Corresponding author. Department of Mechanical Engineering, Dalhousie University, 5269 Morris Street, Halifax, NS B3H 4R2, Canada. Tel.: +1 (902) 494 3165; fax: +1 (902) 423 6711.

TCC

Nomenclature

ACSH	annual cost savings for the house due to energy savings in a uniform series $(C^{\$})$
АТССИ	a uniform series $(C\phi)$
Alteri	fuel cost escalation rate (decimal)
с г	aporgy caving per period for each fuel type (unit
L	depends on fuel type: kg_litre_kM/h_etc.)
EIE	ample on the type, kg, fille, kwil, etc.) amission intensity factor ($\alpha CO = /kWh$)
CIF C	fuel price per unit of each fuel type ($C^{(\mu)}$)
Г СЕР	CHC omission reduction (docimal)
GER	CIIC emissions from combined best and electricity
GHGCHP	GRG emissions from combined field and electricity
	retrofit
CHC	CHC omissions from constrate heat and electricity
GUCHS	and emissions from separate field and electricity
CHC	CHC omissions from constrate heat and electricity
GIGN-E	and emissions from separate field and electricity
	retrofit
÷	interest rate (decimal)
m	number of different fuels used in a house
n	acceptable payback period (year)
NH	number of houses that received the upgrade
PEcup	primary energy consumption for cogeneration
PECHEFE	primary energy consumption for separate electricity
CH3,EE	production for the CHS
PECUS th	primary energy consumption for separate heat
	production for the CHS
PEcony	primary energy consumption of separate heat and
	electricity generation
PEICE	primary energy consumption for ICE cogeneration in
102	houses that receive ICE cogeneration retrofit
PE _{N-E.EE}	primary energy consumption for separate electricity
,	production in houses not eligible for ICE cogeneration
	retrofit
PE _{N-E.th}	primary energy consumption for separate heat
	production in houses not eligible for ICE cogeneration
	retrofit
PES	primary energy saving (decimal)
SEEE	electricity use
SE _{th}	secondary energy used for heating

TCC	tolerable capital cost (C\$)	
TCCH	tolerable capital cost of the retrofit for the house (C\$)	
TTCC	total tolerable capital cost (C\$)	
Greek symbols		
л _{FF СНР}	electrical efficiency of the cogeneration production	
$\eta_{EE,conv}$	efficiency reference value for separate electricity	
,,	production	
$\eta_{th,CHP}$	thermal efficiency of the cogeneration system	
$\eta_{th,conv}$	efficiency reference value for separate heat production	
Abbreviat	tions	
AB	Alberta	
AL	appliance and lighting	
BC	British Columbia	
CHP	combined heat and power	
CHREM	Canadian hybrid residential end-use energy and GHG	
	emissions model	
CHS	Canadian housing stock	
CSDDRD	Canadian single-detached double/row database	
C\$	Canadian dollar	
DHW	domestic hot water	
GHG	greenhouse gas	
HHV	higher heating value	
IC	internal combustion	
ICE	internal combustion engine	
LHV	lower heating value	
MB	Manitoba	
NB	New Brunswick	
NG	natural gas	
NF	Newfoundland	
NS	Nova Scotia	
NZE	net zero energy	
OEE	Office of Energy Efficiency	
ON	Ontario	
PCM	phase change material	
PE	Prince Edward Island	
QC	Quebec	
SK	Saskatchewan	
SNEBRN	smart net-zero energy buildings strategic research	
	network	

Cogeneration (i.e. combined heat and power - CHP) systems that generate electrical and thermal energy simultaneously from a single source of fuel are of interest because of their higher efficiency compared to conventional systems that generate electricity and thermal energy in two separate processes. Onovwiona & Ugursal [3] classified micro cogeneration units into four major categories: reciprocating internal combustion (IC) engine based, micro turbine based, fuel cell (FC) based and reciprocating external heat source Stirling engine (SE) based. As part of a comprehensive effort to evaluate the feasibility of different cogeneration systems for the Canadian housing sector to achieve or approach net-zero rating, the IC engine based system is considered in this work due to the mature technology, fuel adaptability and ubiquitous presence of IC engines in the market. Several authors used experimental and numerical approaches to study residential scale ICE cogeneration systems. For example, Aussant et al. [4] developed a series of test case house models using a building performance simulation program to assess the economic feasibility and efficiency of residential scale ICE cogeneration system in Canada. It was concluded that electrical and thermal loads as well as climatic conditions and construction characteristics of the house may have strong influence on the overall performance of the micro cogeneration system. It was also found that the increase in the fuel cost of household due to the cogeneration system could be justified by the electricity trade with the grid. Aliabadi et al. [5] conducted a study to compare three natural gas powered micro cogeneration systems (i.e. ICE, SE and FC) from energy, exergy and marginal efficiency perspectives. The analysis showed that for all three systems, the ICE cogeneration system energy and exergy efficiencies increase with heat use. Caresana et al. [6] modelled a 28 kWe natural gas fired ICE cogeneration system to investigate the constant and variable speed operation modes. Techno-economic analysis showed that good energy and economic performances compared with a conventional heat and electricity generation system can be achieved in a 10-flat apartment building. Beausoleil-Morrison [7] and Ferguson et al. [8] developed a model for residential scale ICE cogeneration system as part of IEA/ECBCS Annex 42. The model was implemented into a series of whole building simulation programs including EnergyPlus, Download English Version:

https://daneshyari.com/en/article/645249

Download Persian Version:

https://daneshyari.com/article/645249

Daneshyari.com