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A B S T R A C T

We present an analysis of intracellular metabolism by non-targeted, high-throughput metabolomics profiling of
18 breast cell lines. We profiled > 900 putatively annotated metabolite ions for > 100 samples collected under
both normoxic and hypoxic conditions and revealed extensive heterogeneity across all metabolic pathways and
cell lines. Cell line–specific metabolome profiles dominated over patterns associated with malignancy or with
the clinical nomenclature of breast cancer cells. Such characteristic metabolome profiles were reproducible
across different laboratories and experiments and exhibited mild to robust changes with change in experimental
conditions. To extract a functional overview of cell line heterogeneity, we devised an unsupervised metabotyping
procedure that for each pathway automatically recognized metabolic types from metabolome data and assigned
cell lines. Our procedure provided a condensed yet global representation of cell line metabolism, revealing the
fine structure of metabolic heterogeneity across all tested pathways and cell lines. In follow-up experiments on
selected pathways, we confirmed that different metabolic types correlated to differences in the underlying fluxes
and difference sensitivity to gene knockdown or pharmacological inhibition. Thus, the identified metabotypes
recapitulated functional differences at the pathway level. Metabotyping provides a powerful compression of
multi-dimensional data that preserves functional information and serves as a resource for reconciling
or understanding heterogeneous metabolic phenotypes or response to inhibition of metabolic pathways.

1. Introduction

Cellular metabolism supports core processes such as growth,
proliferation, differentiation, migration, and stress resistance. These
processes occur through a large but finely coordinated network of
biochemical reactions that can catabolize a large number of substrates
and fulfill biosynthetic, energetic, and redox requirements in a
balanced way. Regulation and coordination of these activities is
complex and depends not only on external cues (i.e., nutrients,
hormones, cell-to-cell interactions), receptors, and intertwined signal-
ing cascades but also on the metabolic network itself in which
metabolites act as integrative signals and drive cellular decision-
making (Carey et al., 2015; Wellen et al., 2010).

Such processes are pivotal for cancer cell survival and tumorigen-
esis (Locasale et al., 2009; Vander Heiden et al., 2011). Solid tumors
feature metabolic alterations that generally increase their physiological

activity and enable adaptation to changing environments. A common
alteration is enhanced glucose uptake and lactate secretion regardless
of oxygenation (the Warburg effect), but dependencies on other
nutrients are being more frequently reported (Jain et al., 2012;
Mayers and Vander Heiden, 2013; Vander Heiden et al., 2009;
Yuneva et al., 2007). The metabolic peculiarities of cancer cells are of
utmost interest for selective therapy, and several novel drugs targeting
metabolism are currently or about to be evaluated in clinic trials
(Galluzzi et al., 2013; Zhao et al., 2013). Metabolic alterations in cancer
can be the consequence of oncogene activation or loss of tumor
suppressors, but genetic alterations within the coding region of
metabolic enzymes also have been described (Cairns et al., 2011).

A grand challenge in biomedical research is the heterogeneity that
ubiquitously and naturally occurs among and within individuals.
Phenotypic heterogeneity arises in normal tissues by environmental
differences, differentiation programs, or oscillations coupled to, e.g.,
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cell cycle or circadian clocks. Cellular heterogeneity is further amplified
in many diseases that feature increased genomic instability, such as
cancer, leading to substantial variety of genetic variants (Parsons et al.,
2008; Pleasance et al., 2010; Wood et al., 2007). Such abnormal
heterogeneity has severe clinical implications as it translates into
differential responses of disease cells to pharmacological treatments
and may cause serious complications such as resistance to therapy or
relapse (Bedard et al., 2013; Meacham and Morrison, 2013). Cellular
heterogeneity manifests also at the metabolic level (Hu et al., 2013),
where it can affect cell growth, nutritional requirements, the capacity to
endure stress and proliferate in diverse microenvironments, use of
alternative pathways, and susceptibility to metabolic perturbations.
These factors are crucial for cancer cells to adapt to the demands of
proliferation, tumor growth and metastases. As recent studies
demonstrate, cancer cells adopt multiple strategies to secure their
metabolic demands (Cantor and Sabatini, 2012).

It remains very challenging to investigate metabolic heterogeneity
or, more generally, phenotypes solely on the basis of genomic or
expression data. The main limitation of such top-down studies is the
complexity of predicting how genomic alterations affect enzyme
abundance and kinetics and eventually cell-wide metabolic fluxes.
Instead, the bottom-up characterization of metabolic phenotypes at
the flux or metabolome level is preferable because it provides a direct
readout on metabolism. In a milestone study, Jain et al. (2012)
reported the characterization of uptake and secretion rates of the
NCI60 cancer cell line. In addition to the identification of a ubiquitous
dependency on glycine for proliferation, it is striking how many
singularities they observed in the uptake and production of metabolites
by specific cell lines only.

We wondered how this apparent heterogeneity in the
exometabolome translates to the intracellular metabolism of cell lines.
We decided to focus on a breast tissue–specific panel of 18 cell lines, 4
of which were non-malignant. These cell lines have been widely
phenotyped and characterized (Neve et al., 2006). Studies of the
heterogeneity of breast cancer have led to classification into three
main clinical groups: i) the estrogen receptor (ER) -positive group, in
which the progesterone receptor (PR) is often co-expressed; ii) the
human epidermal growth factor receptor 2 (HER2) amplified group;
and iii) the triple-negative breast cancer group, lacking ER, PR, or
HER2 expression and thus being particularly difficult to treat (Eroles
et al., 2012; Weigelt and Reis-Filho, 2009). Recent studies of genomes
and transcriptomes have revealed a large diversity of driver mutations
among one group of tumors, leading to refinement of these categories
(Curtis et al., 2012; Neve et al., 2006; Parker et al., 2009; Reis-Filho
and Pusztai, 2011; Shah et al., 2012; Stephens et al., 2012; The Cancer
Genome Atlas Network, 2012).

We previously investigated the susceptibility of these breast cell
lines to the knockdown of 231 metabolic enzymes and found
heterogeneous responses to functional perturbations (Baenke et al.,
2015). In the current study, we employed metabolomics to characterize
the heterogeneity in intracellular metabolism of the breast cell lines
grown in vitro under normoxia and hypoxia. Our analysis reveals an
extremely heterogeneous and fine-grained landscape of metabolic
profiles. We propose an unsupervised metabotyping procedure that
automatically recognizes peculiar metabolome profiles within pathways
and assigns cell lines to different groups.

2. Material and methods

2.1. Cell culture

Cell lines were obtained from the American Type Culture Collection
and LRI Cell Services. All cells were cultured in DMEM: F12 (Gibco
21331), with 2 mM L-glutamine freshly added (Gibco 25030) and 1%
penicillin/streptomycin (Gibco 15070). Medium was supplemented
with 10% fetal bovine serum (Gibco 10270) for the cancer cell lines

and 5% horse serum (Sigma-Aldrich H1270), 20 ng/ml epidermal
growth factor (Sigma Aldrich E1257), 0.5 µg/ml hydrocortisone
(Calbiochem 3867), 10 µg/ml insulin (Sigma Aldrich I9278) and
100 ng/ml cholera toxin (Sigma Aldrich C8052) for the non-malignant
cell lines. When poorer medium was used cell were grown in DMEM
(Gibco 11966) supplemented with 17,5 mM of glucose (the same
concentration as in DMEM: F12). Cell line were grown at 37 °C with
5% CO2. For hypoxic culture, oxygen was limited to 0.5%. Cell lines
were maintained according to standard protocols, their identity verified
via STR sequencing (Microsynth) and tested for mycoplasma infections
(Sigma Aldrich D9307).

2.2. Metabolite extract preparation

For all metabolomics experiments, cell lines were seeded in 6 well
plates, medium was changed after 24 h, and cell were collected as
follows after 48 h. Cell were seeded in order to obtain 70–80%
confluency after 48 h (confluency of cell lines is used here as a proxy
for volume, i.e. similar confluency equal similar cell volume extracted).
At 48 h, medium was removed via aspiration and cells were washed
twice with a wash solution (75 mM Ammonium Carbonate, adjusted to
pH 7.4 with Acetic Acid). Metabolism was quenched by dipping the
bottom of the plate in liquid nitrogen for 1 min. Frozen plates were
transferred to −80 °C freezer until further usage.

Extracts were generated by adding twice 0.7 ml of 70% (v:v)
ethanol:water at 75 °C to each well and keeping the plate on a hot
metallic block (at 75 °C) for 2 min. After the 2 min, extracts were
transferred to Eppendorf tubes and kept on ice. The same amount of
hot ethanol was added a third time to wash thoroughly the plate.
Extracts were then dried at 0.12 mbar in a SpeedVac (Christ,
Germany). Dried samples were conserved at −80 °C until measure-
ment.

For labeling experiments, cells were seeded in two 6 well plates.
Cells were kept for 96 h in labeled medium (DMEM (Gibco 11966)
supplemented with 17,5 mM fully labeled glucose or DMEM: F12
supplemented with 2 mM labeled glutamine) with change of medium at
24 and 72 h. 1 plate per cell line was extracted as mentioned above.
To the second plate, 400 µl of 4:4:2 (v:v:v) mix of acetonitrile/
methanol/water at −20 °C containing 400 µM of phenylhydrazine for
derivatization of pyruvate (Zimmermann et al., 2014) were added.
Plates were stored for 10 min at −20 °C and extraction solvent was
collected and transferred to Eppendorf tubes and kept on ice.
The procedure was repeated a second time, followed by a final wash
with the same amount of solvent, before the extracts were dried and
conserved as above. The original experiment with 18 cell lines (shown
in Fig. 1B) was performed in the lab of AS by FB. Repetitions with a
subsets of cell lines (used in Supplementary Fig. 3), uptake and labeling
experiment were performed by SD in the lab of NZ. All samples were
injected simultaneously as mentioned in the following sections.

2.3. Mass spectrometry measurements

Dried sample were resuspended in 100 µl of deionized water and
centrifuged at 20′000 rcf for 30 min at 4 °C. For untargeted
metabolomics, clean extracts were plated in 96 well plates and
quantification of metabolites was performed by randomized double
injection of a total of 10 µl on an Agilent 6550 QTOF instrument (or on
an Agilent 6520 QTOF instrument for the serum swap experiment) by
flow injection analysis time-of-flight mass spectrometry (Fuhrer et al.,
2011). All samples were injected in duplicates. Ions were annotated
based on their accurate mass and the Human Metabolome Database
(HMDB) (Wishart et al., 2013) reference list allowing a tolerance of
0.001 Da and systematically accounting for numerous expected ions,
adducts, and isotopes. Importantly, accurate mass doesn’t allow
distinguishing between compounds with identical molecular formula
and, hence, ions can match multiple chemical formulas. These are
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