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ARTICLE INFO ABSTRACT

Keywords: The increasing availability of large metabolomics datasets enhances the need for computational methodologies
TMFA that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the
TFBA metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant

GSA ’ deli insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux
I}:I;’:bo ic Modeling Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the
DOE flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux

values that are consistent with the studied physiological and thermodynamic conditions. However, unless key
intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined
problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic
reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which
metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our
ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design
of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite
Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their
ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal
states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic
network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance
ranking of metabolites to guide experimental measurements.

1. Introduction

The development of new modeling methods (Miskovic and
Hatzimanikatis, 2010) has enabled the formulation of genome-scale
kinetic models which are consistent with stoichiometric, thermody-
namic and physiological constraints (Chakrabarti et al., 2013; Stanford
et al., 2013; Miskovic et al., 2015; Ataman and Hatzimanikatis, 2015).
Constraint based methods, such as Flux Balance Analysis (FBA), are
commonly used to estimate the flow of metabolites through such
metabolic networks, making it possible to identify the ranges of flux
values that are consistent with the studied conditions (Palsson, 2006;
O'Brien et al., 2013; Orth et al., 2010). In the absence of explicit
experimental information for key intracellular reactions, a situation
commonly encountered when considering a new organism or strain,
fluxes are allowed to vary between physiologically relevant bounds,
often derived from literature, which leads to underdetermined problem
formulations. The lack of explicit experimental information propagates
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as uncertainty in the estimated Gibbs free energy of reaction, A,G’, and
consequently in the determination of reaction directionalities which in
turn constrain the flux profiles and the thermodynamically feasible
concentration ranges (Ataman and Hatzimanikatis, 2015; Soh and
Hatzimanikatis, 2014). This results in the existence of numerous
alternative internal flux distributions that satisfy the model's con-
straints and can achieve the same optimum (Orth et al., 2010; Lee
et al., 2006; Soh et al., 2012). The size of the resulting solution space,
comprising the gamut of alternate optimal flux distributions, can be
viewed as a representation of the uncertainty in predicting an exact
intracellular state relevant to the studied physiology (Binns et al., 2015;
Reed, 2012). Therefore knowledge of which metabolites, if measured,
would contribute the most to reducing this uncertainty can significantly
improve our ability to define the internal state of a cell.

The space of steady state flux solutions has attracted significant
scientific interest in a number of studies that either attempted to
attribute biological significance to characteristics of the solution space
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(Kelk et al., 2012; Trinh et al., 2009) or attempted to achieve more
accurate flux distributions by incorporating additional physicochemical
information in the form of constraints based on thermodynamic
properties (Henry et al., 2007), molecular crowding considerations
(Vazquez and Oltvai, 2011) and carbon labeling information (Chen
et al., 2011; Masakapalli et al., 2010; Quek et al., 2010). However the
problem of identifying network components with a significant con-
tribution towards the observed uncertainty remains far from trivial
(Hadlich et al., 2011). Approaches that have been employed to study
the sensitivity of FBA outputs include one-factor-a-time numerical
perturbation simulations (Edwards and Palsson, 2000; Mahadevan
et al., 2002; Segre et al., 2002) or derivative based local measures
(Klier, 2012; Hoppe et al., 2007), which almost exclusively study the
effect of the model constituents on the value of the objective function
(Chen et al., 2011; Masakapalli et al., 2010; Hadlich et al., 2011).
Whilst the proposed approaches have provided valuable qualitative
information, they have not been able to provide a functional correlation
with metabolites that exert strong influence on the qualitative and
quantitative behavior of a particular reaction (or a subset of reactions).

Thermodynamics-based flux analysis (TFA) (Ataman and
Hatzimanikatis, 2015), also referred to as thermodynamics-based
metabolic flux analysis (TMFA) (Henry et al., 2007) and thermody-
namics-based flux balance analysis (TFBA) (Soh and Hatzimanikatis,
2014; Soh et al, 2012) was introduced by Hatzimanikatis and
colleagues and allows integration of metabolomics data into FBA
models (Ataman and Hatzimanikatis, 2015; Soh et al., 2012). Apart
from enforcing compliance with the second law of thermodynamics,
TFA effectively reduces the size of the solution space by selecting only
the thermodynamically feasible sets of the following biochemical and
thermodynamic variables: reaction directionalities, net fluxes through
a reaction, A,G’ and metabolite concentrations (activities). The permis-
sible ranges of these biochemical variables can be explored within TFA
using linear optimization in a methodology defined as Thermodynamic
Variability Analysis (TVA) (Soh and Hatzimanikatis, 2014; Henry et al.,
2007). In TVA, the ranges for the activity of each metabolite, the A,G'
and the net flux of each reaction are estimated through their mini-
mization and maximization subject to the thermodynamic and mass
balance constraints. Consequently we can estimate whether a reaction
is thermodynamically reversible under the studied physiological con-
ditions and whether it operates near or far from thermodynamic
equilibrium.

Knowledge of the metabolite concentrations for all the products and
substrates of a reaction allows the exact estimation of its thermo-
dynamic properties such as A,G' and displacement from thermody-
namic equilibrium (denoted as T' (Miskovic and Hatzimanikatis,
2011)). The uncertainty in the exact values for metabolite concentra-
tions, either due to experimental variability or due to lack of experi-
mental data, propagates through the thermodynamic constraints
introduced by TFA to uncertainty in the thermodynamic properties of
the reactions comprising a metabolic network. In the present work we
propose a new framework that combines TFA, Design of Experiments
(DoE) and Global Sensitivity Analysis (GSA) methods in order to
determine and quantify how variability in metabolite concentrations
propagates to uncertainty in the thermodynamic properties of any
reaction within a metabolic network. TMSA ranks the various meta-
bolites according to their ability to reduce variability in the thermo-
dynamic properties of reactions, and thus it enables the targeted
reduction of uncertainty (Soh and Hatzimanikatis, 2014; Henry
et al., 2007). The metabolites with the largest contribution to the
observed uncertainty can be considered as high priority targets for
experimental analysis. Consequently, TMSA can fully exploit and even
upgrade the value of metabolomics data, an important, genome-scale
source of experimental information (Lee et al., 2006). Moreover,
quantification of the propagation of uncertainty from metabolite
concentrations to systemic properties can be used for the design of
metabolic engineering strategies and the formulation of hypotheses in
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many problems related to metabolism.

2. Methods

Below we present an overview of the basic concepts of the proposed
methodology using a simple example before presenting each step in
greater detail. Let us consider the case of a reversible reaction involving
two substrates, which react towards two products:

A+B< C+D (1)
The A,G' of this reaction can be estimated (Henry et al., 2007) as:
AG' = (&Gl + A Gy — A;Gy — A; Gy} + RTIn(C-D) — RTIn(A-B)  (2)

where (AfG’;) denotes the formation energy of the participating species,
R is the universal gas constant and T is the absolute temperature. The
formation energy terms (A;G’;) can be retrieved from relevant literature
or estimated using appropriate computational methods (Jankowski
et al, 2008). Thus the only unknowns left in Eq. (2) are the
concentrations of the four metabolite species participating in the
reaction (A, B, C and D). We want to examine whether it is necessary
to measure all four concentrations in order to define the A,G' for
reaction (1) within an acceptable uncertainty range. Additionally, if we
can achieve the desired accuracy with fewer measurements, we want to
know the order in which the participating metabolites should be
measured.

Intuitively one would start by testing how different concentrations
of the four participating metabolite species (A, B, C and D) affect the
A.G' of reaction (1). This concept can be formalized by considering it in
an uncertainty analysis setting. In this context, the concentrations of
the metabolite species can be considered as uncertain input factors (X)
with a predefined range while the thermodynamic properties of
reaction (1) will constitute the studied output variables (R7). If D+
defines the variance observed in the studied output, we are interested
in estimating the fractional contributions of the variability of metabo-
lites i towards the variance of the observed output (D7), which are
defined as fractional variances d 4, dg, dc and dp, such that:

Dy =dy+ dg + dc + dp. 3)

Therefore the experimental quantification of metabolite species
with higher fractional variance, d;, can be prioritized over metabolites
with a lesser effect.

For single reactions or small subsets of reactions (where the total
number of metabolites is ~ < 4) the effects of metabolite concentrations
on the studied outputs can be assessed through a small set of
randomized or heuristic trial and error model evaluations. However
for larger subsets of reactions, pathways or genome scale models the
effects of metabolite uncertainty, i.e. the fractional variances of the
metabolites, propagate in a non-linear manner. Therefore we need a
robust model analysis method able to identify, quantify and analyze
such network-level, non-linear effects. Sensitivity Analysis, and in
particular Global Sensitivity Analysis (GSA), methods are frequently
the methods of choice when studying complex non-linear models due
to their ability to differentiate between first and higher order (non-
linear) sensitivity (Saltelli, 2008; Chan et al., 1997). Current state-of-
the-art Global Sensitivity Analysis (GSA) methods are not directly
applicable in a TFA setting due to difficulties in the implementation of
commonly used numerical techniques, such as the estimation of high
dimensional integrals through their Monte Carlo approximation (see
Supplemental Material). In order to circumvent this limitation we
developed our method based on the methodology introduced by
Kiparissides et al. (2014) that employs Design of (in silico)
Experiments (DoE) for the estimation of first and higher-order
sensitivity measures.

Instead of measuring the effect of one-metabolite-at-a-time we use
an experimental design to study how different combinations of con-
centration values affect the thermodynamic properties of reaction (1).
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