FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Research paper

Hierarchical Z-scheme photocatalyst of g-C₃N₄@Ag/BiVO₄ (040) with enhanced visible-light-induced photocatalytic oxidation performance

Man Ou^{a,b}, Shipeng Wan^{a,b}, Qin Zhong^{a,b,*}, Shule Zhang^{a,b}, Yang Song^{a,b}, Lina Guo^{a,b}, Wei Cai^c, Yalin Xu^{a,c}

- ^a School of Chemical Engineering, Nanjing University of Science and Technology Nanjing, Jiangsu 210094, PR China
- Nanjing AIREP Environmental Protection Technology Co., Ltd, Nanjing, Jiangsu 210091, PR China
- ^c Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing, Jiangsu 210044, PR China

ARTICLE INFO

Keywords: Facets G-C₃N₄@Ag/BiVO₄ Z-Scheme Photoatalytic oxidation

ABSTRACT

The preferred exposure of (040) crystal facet of BiVO₄ is conductive to optimizing its photocatalytic performance. And the great separation of photoinduced electron-hole pairs is also a critical factor for semiconductor photocatalyst. Herein we designed a hierarchical g-C₃N₄@Ag/BiVO₄ (040) hybrid photocatalyst, in which Ag was photodeposited on the (040) facets of BiVO₄ and subsequently g-C₃N₄ was covered on the surface of Ag/BiVO₄ (040). The physical and chemical properties of the synthetic samples were analyzed by several characterization techniques. SEM spectrum clearly reveals the morphology and structure of g-C₃N₄@Ag/BiVO₄ (040), suggesting the existence of the hierarchical composite photocatalyst. The visible light absorption wavelength of the composite is increased due to the surface plasmon resonance (SPR) effect of metal Ag nanoparticles, displayed in UV–vis spectrum. The photogenerated electron-hole pairs are also greatly enhanced through the Z-scheme g-C₃N₄@Ag/BiVO₄ (040) system with the Ag nanoparticles as the electron mediator. The above synergistic effects of the hybrid photocatalyst result in higher photocatalytic oxidation performance not only for water splitting but also for NO oxidation in gas phase compared with pure BiVO₄.

1. Introduction

Semiconductor heterogeneous photocatalysis has been received keen interest in recent years to solve global energy crisis and natural environments deterioration [1,2]. The development of highly active photocatalysts remains a huge undertaking. Previously, we reported the monoclinic BiVO₄ with strong photo-oxidation properties, which could efficiently oxidize high concentration NO (\sim 400 ppm) with the help of H₂O₂ under visible light irradiation [3,4]. The strong oxidizing property of BiVO₄ is ascribed to its positive valence band value ($E_{VB} = 2.7 \text{ eV}$) [5]. The excellent property triggers us to investigate its effects on the oxidation of water to produce O₂ (E_0 (H₂O/O₂) = 1.23 eV) [6] and NO in flue gas to NO₃ $^-$ (E_0 (HNO₃/NO) = 0.94 eV) [7] under visible light irradiation, making the material possess versatility.

Theoretical and experimental research have demonstrated that the surface of monoclinic BiVO₄ (040) facets can provide more multiatomic centers BiV₄, which is the origin of the multi-electron transfer and then served as active sites in the photocatalytic reaction [8]. Thus, it's worth constructing the BiVO₄ material with a high proportion of (040) facets. However, the photocatalytic performance of the single BiVO₄ can be also limited by its low separated rate of photogenerated charge carriers. In order to resolve this problem, many efforts such as doping with nonmetallic [9], combined with graphene [10,11] and constructing heterojunctions [12–14] with two semiconductors have been carried out. Therein, the heterojunction photocatalyst usually displays the higher photoactivity since it is able to facilitate the separation of photogenerated charge carriers to a large extent, and then leaving more electrons and holes participating in the photocatalytic reaction.

Among the numerous heterojunction photocatalysts, the Z-scheme photocatalytic system possesses the potential to achieve larger separation ratio of photo-induced electrons and holes. Generally speaking, the artificial heterogeneous Z-scheme consists of two different semiconductor photocatalysts with suitable band gaps and an electron mediator. In recent years, the noble-metal, such as Au, Pt and Ag were mainly adopted as the electron mediator to transport electrons to improve the photoactivity [15–18]. Zhao et al. constructed an all-solid-state g- C_3N_4 /Au/P25 Z-scheme photocatalyst for visible-light-driven H_2

^{*} Corresponding author at: School of Chemical Engineering, Nanjing University of Science and Technology Nanjing, Jiangsu 210094, PR China. E-mail address: zq304@mail.njust.edu.cn (Q. Zhong).

evolution, and the Z-scheme sample exhibited higher photocatalytic performance with respect to pure g-C₃N₄. It was attributed to the effective electron transfer and separation rate of photo-induced electronhole pairs caused by the vectorial electron transfer of P25 \rightarrow Au \rightarrow g-C₃N₄ [17]. The Z-scheme BiVO₄-Ru/SrTiO₃:Rh photocatalyst was synthesized for water splitting under visible light irradiation, which also displayed higher photocatalytic performance than the single component [14]. g-C₃N₄ is also a narrow band gap semiconductor with the CB position at ca. -1.3 eV and the VB position at ca. 1.4 eV vs NHE, which can match well with the BiVO₄ with exposed (040) facets to form an Zscheme photocatalytic system [19,20]. In addition, Ag as relatively cheap noble metal can usually be selected as the "linker" to shuttle the electrons between the two semiconductor components in Z-scheme [18,21]. Up to now, some studies about the g-C₃N₄/Ag/BiVO₄ ternary composite [22,23] have been reported, but relative reports about the BiVO₄ (040)-based ternary materials were quietly scarce. And in the application filed, the g-C₃N₄/Ag/BiVO₄ photocatalysts were usually used in the aqueous phase for decomposition and decolorization of organics, and few ternary composite photocatalyst was used for photocatalytic water oxidation to O2 and photocatalytic oxidation of NO in gas phase to NO₃⁻.

Herein, the g-C₃N₄@Ag/BiVO₄ (040) sample was synthesized in this work to construct a hierarchical hybrid photocatalyst, in which the linker metal Ag was photo-deposited on the (040) crystal facet of BiVO₄ and the g-C₃N₄ prepared by supramolecular method was wrapped the Ag/BiVO₄ (040) by a facile reflux method. The photocatalytic performance of the g-C₃N₄@Ag/BiVO₄ (040) composite was focused on photocatalytic oxidation of water to O₂ and NO in gas phase to NO₃ $^-$. The photocatalytic properties of the hierarchical hybrid photocatalyst were also evaluated by the structure, electronic environment and optical properties. The enhanced ability of the photocatalytic oxidation was remarkable, and reasons were discussed. As well, in this paper, the detailed mechanism of the photocatalysis over Z-scheme g-C₃N₄@Ag/BiVO₄ (040) sample was also further clarified and discussed.

2. Experimental

2.1. Preparation of g-C₃N₄@Ag/BiVO₄ (040) hybrid photocatalyst

2.1.1. Preparation of BiVO₄ sample

BiVO₄ sample with dominant exposed (040) facets was synthesized by a previously reported method [24]. Typically, 6 mmol Bi $(NO_3)_3$ · $5H_2O$ was well dispersed into HNO_3 (2 mol/L, 13.5 mL) aqueous solution under vigorous stirring until a clear solution was formed (A). Meanwhile 6 mmol NH₄VO₃ was dissolved in HNO₃ (2 mol/L, 36.5 mL) aqueous solution with ultrasonic process to form a yellowish orange transparent solution (B). Subsequently, the B solution was added dropwise into the A solution with mechanical agitation. The pH value was adjusted into about 2 by the NH₃·H₂O and subsequently the salmon precipitation was observed. After being stirred for 30 min, the precursor solution was transferred into a 100 mL Teflon-lined stainless steel autoclave and maintained at 200 °C and autogenous pressure for 24 h. After the autoclave was cooled down to room temperature, the precipitation was collected by centrifugation, washed by deionized water and absolute alcohol for several times, and then dried at 80 °C overnight. The product obtained was denoted BiVO₄.

2.1.2. Photo-deposition of Ag on BiVO₄ (040) facets

The photoexcited electrons of $BiVO_4$ photocatalyst under light irradiation have been

demonstrated to be driven to (040) facets of BiVO₄ [24]. Here, the photo-deposition of the Ag on (040) facets of BiVO₄ was achieved with AgNO₃ as the precursor, methanol was employed as the hole scavenger. Typically, BiVO₄ (0.4 g), AgNO₃ (12.6 mg) and 4 mL methanol was successively added to 40 mL deionized water under magnetic stirring. Subsequently, the obtained yellow mixture was irradiated by 350 W Xe

light ($\lambda > 420$ nm) for 2 h. The color of the solution turned form vivid yellow to grayish-green, which suggested the generation of Ag species in reaction system. Finally, the obtained 2 wt% Ag/BiVO₄ product was centrifuged and dried at 80 °C at vacuum oven for overnight. Then the nominal 1 wt% Ag/BiVO₄ and 3 wt% Ag/BiVO₄ photocatalysts were also prepared. If there is no special requirement, Ag/BiVO₄, as it mentions in the paper, refers to 2 wt% Ag loading on the surface of BiVO₄ (040) facets.

2.1.3. Preparation of g-C₃N₄@Ag/BiVO₄ (040) sample

The floccular g- C_3N_4 was synthesized as follows: 0.8 mmol cyanuric acid, 0.4 mmol melamine and 0.4 mmol 2,4-diamino-6-methyl-1,3,5-triazine were mixed in 100 mL deionized water, and vigorously stirred for 12 h to make sure a reiterative dynamic dissolution to allow the formation of crystalline supramolecular complex. Then the milky suspension was centrifuged and washed with deionized water several times. The resulting powders were dried at 60 °C overnight under vacuum conditions and calcined at 550 °C for 4 h at a heating rate of 2 K min $^{-1}$ under N_2 atmosphere.

The g-C₃N₄@Ag/BiVO₄ (040) sample was prepared by a reflux method. An appropriate amount of floccular g-C₃N₄ and Ag/BiVO₄ (040) sample were added to 50 mL deionized water, and then the mixture was obtained by a reflux reaction at 90 °C for 3 h. The obtained g-C₃N₄@Ag/BiVO₄ (040) photocatalyst was washed with water, and finally dried in an oven at 80 °C overnight. The obtained photocatalysts with different mass ratios of g-C₃N₄ were named as 50% g-C₃N₄@Ag/BiVO₄, 100% g-C₃N₄@Ag/BiVO₄ and 150% g-C₃N₄@Ag/BiVO₄. And unless otherwise noted, g-C₃N₄@Ag/BiVO₄, as it appears in the paper, represents the 100% g-C₃N₄@Ag/BiVO₄ sample. The photocatalyst g-C₃N₄@BiVO₄ was also prepared via the same process, but replacing Ag/BiVO₄ with BiVO₄.

2.2. Characterizations

The structural and chemical information for prepared samples were measured by X-ray diffraction (XRD, Cu K α , Purkinjie XD-3), Fourier transform infrared (FT-IR) spectroscopy (Nicolet IS10, USA), Field-emission scanning electron microscope (SEM, FEI Quanta 250F), Brunauer-Emmett-Teller (BET, Quantachrome, autosorb IQ), X-ray photoelectron spectroscopy (XPS, PHI-5000C ESCA), UV-vis diffuse reflectance spectrum (DRS, Shimadzu UV-2600), Photoluminescence spectrum (PL, He-Cd laser, Labram-HR800), Electron paramagnetic resonance (EPR, Bruker EMX-10/12-type spectrometer).

The Mott-Schottky measurements were performed on a CHI 760D electrochemical workstation (shanghai Chenhua, China) using a standard three-electrode cell with a working electrode, a Pt wire as counter electrode, and a standard Ag/AgCl in saturated KCl as reference electrode. An aqueous solution of 0.5 mol/L Na₂SO₄ (pH 6.8) was used as electrolyte and purged with N₂ prior to each experiment. The working electrode was prepared by dip-coating: 10 mg photocatalyst was added into 1 mL ethyl alcohol and 50 μ L Nafion solution to form slurry, and then dip-coated onto a 1 cm \times 1 cm FTO glass electrode. Subsequently, the films were dried at 80 °C overnight and calcined at 180 °C for 2 h at N₂ atmosphere. The variations of photoinduced current density with time (*i*–*t* curve) and electrochemical impedance spectroscopies (EIS) were measured with a 350 W Xe light (with 420 nm filter) as the light source and 0.5 mol/L Na₂SO₄ as the electrolyte.

2.3. The photocatalytic oxidation reaction

2.3.1. The photocatalytic water oxidation

The photocatalytic O_2 evolution tests (Labsolar-III AI, Perfect Light, China) were carried out in NaIO₃ aqueous solution under visible light from 350 W Xe light equipped with a 420 nm cut filter. In each experiment, 90 mg photocatalyst was dispersed in 90 mL NaIO₃ aqueous solution (0.2 M) in a 200 mL reactor with a top widow made of Pyrex at

Download English Version:

https://daneshyari.com/en/article/6453399

Download Persian Version:

https://daneshyari.com/article/6453399

<u>Daneshyari.com</u>