Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Research paper

$\rm ZrO_2$ support imparts superior activity and stability of Co catalysts for $\rm CO_2$ methanation

Wenhui Li^a, Xiaowa Nie^a, Xiao Jiang^c, Anfeng Zhang^a, Fanshu Ding^a, Min Liu^a, Zhongmin Liu^b, Xinwen Guo^{a,*}, Chunshan Song^{a,c,*}

^a State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China

^b National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China

^c Clean Fuels & Catalysis Program, EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Departments of Energy and Mineral Engineering and of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA

ARTICLE INFO

Keywords: CO₂ methanation Cobalt catalyst ZrO₂ Al₂O₃ Interface

ABSTRACT

Screening of various supports reveals that Co catalysts supported on ZrO_2 and Al_2O_3 show good initial activity for CO_2 methanation. Co/ZrO_2 and Co/Al_2O_3 catalysts prepared by impregnation with different metal loadings were further examined comparatively. The $10Co/ZrO_2$ catalyst showed high activity with CO_2 conversion of 92.5% and CH_4 selectivity of 99.9% without deactivation after 300 h time on stream (TOS). However, the $10Co/Al_2O_3$ catalyst gave a lower CO_2 conversion of 77.8% which decreased to 38.6% after 300 h TOS. The catalysts were characterized by STEM/EDS (scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy), in situ XRD(X-ray diffractometer), H₂-TPR(temperature programmed reduction), XPS (X-ray photoelectron spectroscopy), chemisorption of H₂, CO, CH₄, CO₂ and NH₃-TPD (temperature programmed desorption). Re-dispersion of Co species on the ZrO₂ support during reduction by H₂ was observed by STEM/EDS. New Co-Zr phase formed on the Co-ZrO₂ interface was directly observed by TEM for the first time; the Co/ZrO₂ catalyst exhibited high stability with high activity for CO₂ conversion. In situ XRD, H₂-TPR and XPS results indicate the promoting effect of ZrO₂ on the reduction of Co₃O₄ to Co metal along with the negative effect of Al₂O₃. The oxygen vacancies on the ZrO₂ detected by XPS may help to activate CO₂ and H₂O and resist deactivation. Co/ Al₂O₃ catalyst deactivates rapidly due to coke deposition and spinel formation.

1. Introduction

Continuing consumption of fossil fuels worldwide led to increasing CO_2 concentration in the atmosphere, and global climate change caused by greenhouse gases dominated by CO_2 has become a major challenge [1–11]. At present, CO_2 can be reduced in three ways: control of CO_2 emissions, CO_2 capture and storage, and chemical conversion and utilization of CO_2 [5,7]. Carbon storage is important for cutting CO_2 emissions quickly but has issue of potential leakage of CO_2 [3,5]; CO_2 conversion requires energy input but is receiving increasing attention in conjunction with renewable energy utilization.

 CO_2 hydrogenation [2,6,8,11] using H_2 produced with renewable energy sources [12,13] is a promising research direction to produce methanol [14–19], hydrocarbons [20–22], synthetic natural gas (methane) [23–29] and chemicals [30]. Currently uses of renewable energy sources are limited by their inherent intermittency and require scalable means of storage [31]. Electrolysis of water to generate H_2 is a potential storage approach. Effective conversion of CO₂ to fuels and chemicals with renewable energy can be achieved using H_2 produced with renewable energy [32–34]. On the other hand, the above applications for CO₂ methanation also require inexpensive and stable catalysts with high performance.

 CO_2 methanation was first reported by the French chemist Paul Sabatier [35]. This reaction with inexpensive and stable catalysts is a promising new way to store renewable energy such as wind and solar power, to transform biogas effectively to biomethane and to convert CO_2 to chemical feedstock and fuel [36,37]. CO_2 methanation is exothermic with high equilibrium conversion between 25 °C to 400 °C as shown in Fig. 1 which is plotted using the data from literature [38,39].

 CO_2 methanation can be catalyzed by transition metals such as Co

E-mail addresses: guoxw@dlut.edu.cn (X. Guo), csong@psu.edu, hoscxs@gmail.com (C. Song).

http://dx.doi.org/10.1016/j.apcatb.2017.08.048 Received 26 May 2017; Received in revised form 13 August 2017; Accepted 14 August 2017 Available online 19 August 2017 0926-3373/ © 2017 Published by Elsevier B.V.

^{*} Corresponding authors at: State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China

Fig. 1. Equilibrium conversion of CO₂ in methanation at different temperatures.

[40-43], Ni [44,45], Ru [46,47], Rh [48] and Pd [49,50]. Co and Nibased catalysts are preferred because of their low costs compared with the noble metals (Ru, Rh, Pd). Weatherbee and Bartholomew studied various Group VIII metal catalysts supported on SiO2 and found Co is more active than Ni in CO_2 methanation [51]. Other researchers have used Al₂O₃ [27,52], SiO₂ [53,54], ZrO₂ [55], TiO₂ [26,56], CeO₂ [25] and zeolites [44] to support Ni or Co [41,42,57] to catalyze methanation of synthesis gas or CO2. Among the results reported so far, only a few Co-based catalysts show high CO₂ conversion [41,42], high selectivity to CH₄ and long lifetime at the same time. There are many factors concerning supports that can influence the performance of metal catalysts [58], such as pore size [59], structure of supports [41], surface chemistry and metal-support interaction [45,60-62]. The activity and selectivity of these catalysts have been shown to be sensitive to the interaction between the active metals and oxide supports [45,60-62]. Previous studies suggested that the reduction of CO₂ requires the cooperation of metal which can dissociate H₂, and the metal-support interface which can activate CO₂ [47,50]. Therefore, the support and reduction degree of the metal oxide affect the activity of the catalysts. Schulz et al. found that the right amount of zirconium oxide was conducive to the reduction of cobalt [63]. Oukaci et al. reported that Zr played an important role in moderating Co-support interactions and improving the catalyst stability [64]. ZrO₂ may contain both weak acid sites and basic sites and have different phases [65]. The higher concentration of oxygen defects on the m-ZrO₂ could improve the adsorption of oxygenated species including CO₂ [66,67]. In addition, ZrO₂ has excellent hydrothermal stability to adapt to the high temperature and high pressure of CO2 methanation [68]. ZrO2 is frequently used as a promoter [55]. The γ -Al₂O₃ is commonly used as an oxide support and known for its strong metal-support effect [22]. There have been some theoretical studies examining the effect of supports on the performance of metal catalysts [69-76], and these studies illustrate that the metalsupport interaction plays a very important role in the activity and selectivity.

Despite these efforts, the substantial differences between ZrO_{2} - and Al_2O_3 -supported catalysts including adsorption and activation of reactants, influence on metal oxide reducibility and catalytic properties have not been fully studied. Understanding the influence of the support on the metal nanoparticles has been an important issue in heterogeneous catalysis for decades [77].

In the present work, various supports including ZrO_2 , Al_2O_3 , SiO_2 , SiC, TiO_2 and activated carbon (AC) loaded with 10 wt% Co were first screened in CO_2 methanation. The Co/ZrO₂ catalyst has the highest CH₄ yield, while Al_2O_3 is the most studied support. The Co/ZrO₂ catalyst shows both a high CO_2 conversion (close to the equilibrium) and high stability. No deactivation is observed after 300 h on $10Co/ZrO_2$, but on $10Co/Al_2O_3$, CO_2 conversion decreased rapidly from 77.8% to 36.8%

after 300 h. Another aim of the present work is to address the following questions: Why is the cobalt on ZrO_2 more easily reduced? Why is the ZrO_2 supported Co catalyst more active? Why does the $10Co/Al_2O_3$ catalyst deactivate rapidly?

2. Experimental section

2.1. Catalysts preparation

Nano monoclinic ZrO2 and y-Al2O3 were used as the support materials. y-Al2O3 was obtained after calcining pseudo-boehmite in a Maffler furnace in air at 400 °C for 4 h. ZrO₂ samples were prepared by dissolving $ZrO(NO_3)_2$ ·2H₂O (> 45% ZrO₂, Aladdin Chemicals) in a mixture (ca. 70 ml) of urea (> 99%, Aladdin Chemicals) and deionized water, followed by the thermal treatment in a Teflon-lined stainlesssteel autoclave (ca. 100 ml) at 160 °C under autogenous (self-generated) pressure for 20 h. The concentration of Zr^{4+} in the solution was 0.4 M, and the urea/ Zr^{4+} molar ratio was 10. The resulting precipitate was washed thoroughly with water and dried at 110 °C overnight in ambient air and then calcined at 400 °C for 4 h in dry air [78]. Co/ZrO₂ and Co/Al₂O₃ catalysts were prepared by the impregnation method using aqueous solution of $Co(NO_3)_2 \cdot 6H_2O$ (> 99%, Aladdin Chemicals) with Co loadings of 2, 10, and 15 wt%. The impregnated samples were dried at 120 °C for 12 h and calcined at 500 °C for 4 h with heating rate at $2 \degree C \min^{-1}$. The catalysts prepared in this work are denoted as (x) Co/Al_2O_3 or (x) Co/ZrO_2 , where x represents the mass fraction of the Co metal on the basis of support weight.

2.2. Catalytic test

The catalytic hydrogenation of CO₂ was carried out in a pressurized fixed-bed flow reactor (inner diameter 8 mm) where a weighed 1 g catalyst (10–20 mesh) was loaded for each test. Prior to the reaction, the catalyst was pre-reduced in H₂ at 400 °C overnight. After the reduction, the feed gas was switched to the mixture of CO₂ and H₂ with H₂/CO₂ molar ratio of 4 under pressure of 3 MPa at 400 °C; the space velocity was 3600 mlg⁻¹h⁻¹.

The products were analyzed on-line by a gas chromatograph (FULI GC 97). CO₂, CO and CH₄ were analyzed on a carbon molecular sieve column with a thermal conductivity detector (TCD). The conversion of CO₂ and CH₄ selectivity were calculated as Eq. (1) and (2):

$$CO_2 Conversion (\%) = \frac{n_{co_2,in} - n_{co_2,out}}{n_{co_2,in}} \times 100\%$$
(1)

$$CH_4 Selectivity(\%) = \frac{n_{CH_4,out}}{n_{co_2,in} - n_{co_2,out}} \times 100\%$$
(2)

where $n_{co_2,in}$ and $n_{co_2,out}$ represent the molar concentration of CO₂ in the feed and effluent, respectively; $n_{CH_4,out}$ represents the molar concentration of CH₄ in the effluent.

2.3. Characterization of catalysts

The textural properties of the samples were determined by N_2 adsorption on a Quantachrome AUTO-SORB-1-MP sorption analyzer at liquid nitrogen temperature. Prior to the measurements, the samples were degassed at 350 °C for 2 h. The specific surface area was determined by the Brunauer-Emmett-Teller (BET) method. The total pore volume was obtained from the amount of vapor adsorbed at a relative pressure (*P*/*P*₀) close to unity, where *P* and *P*₀ are the measured and equilibrium pressure, respectively. The pore size distribution was obtained using the adsorption isotherm through Barrett-Joyner-Halenda (BJH) method.

The morphological properties of Co-based catalysts were studied by high resolution transmission electron microscopy (TEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDS) using a FEI Download English Version:

https://daneshyari.com/en/article/6453623

Download Persian Version:

https://daneshyari.com/article/6453623

Daneshyari.com