

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Research Paper

CO_2 methanation on Ru/TiO₂ catalysts: On the effect of mixing anatase and rutile TiO₂ supports

Ara Kim^{a,b}, Damien P. Debecker^{a,*}, François Devred^a, Vincent Dubois^c, Clément Sanchez^b, Capucine Sassoye^{b,*}

^a Institute of Condensed Matter and Nanosciences – Molecules, Solids and Reactivity (IMCN – MOST), Université catholique de Louvain, Place Louis Pasteur, 1, box L4. 01.09. 1348 Louvain-La-Neuve. Beleium

^b Sorbonne Universités, UPMC Université Paris, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75252 Paris Cedex,

France

^c Institut Meurice, Laboratoire de Chimie Physique et Catalyse,Avenue Emile Gryson, 1–B-1070 Brussels, Belgium

ARTICLE INFO

Keywords: CO_2 hydrogenation RuO_2 nanoparticles Titania Epitaxy Sabatier reaction

ABSTRACT

The high CO_2 methanation activity of Ru/TiO_2 catalysts prepared by mixing both anatase and rutile TiO_2 as a support is described, focusing on mild reaction temperature (50–200 °C). The specific catalyst design elucidated the impact of the support mixing. Pre-synthesized, monodispersed 2 nm-RuO₂ nanoparticles were used to serve as precursors for active metallic Ru responsible for the CO_2 hydrogenation reaction. Pure TiO_2 supports with different crystallinity (anatase and rutile) were either prepared in the laboratory or obtained from commercial providers, mixed, and used as supports in different ratios. The mixing was also done at different stages of the catalyst preparation, i.e. before RuO_2 deposition, before annealing or after annealing. Our study uncovers that the interaction between the RuO_2 manoparticles and the anatase and rutile TiO₂ phase during the annealing step dictates the performance of the Ru/TiO_2 methanation catalysts. In particular, when beneficial effects of support mixing are obtained, they can be correlated with RuO_2 migration and stabilization over rutile TiO₂ through epitaxial lattice matching. Also, support mixing can help prevent the sintering of the support and the trapping of the active phase in the bulk of the sintered support. On thermally stable TiO₂ supports, however, it appears clearly that the sole presence of rutile TiO₂ support is sufficient to stabilize Ru in its most active form and to prepare a catalyst with high specific activity.

1. Introduction

In recent years, there has been increasing pressure in the society to curb CO_2 emissions and develop efficient CO_2 capture, storage and utilization technologies [1–4]. The reduction of CO_2 emissions is recognized as a long term task as it requires efficient use of energy and switching from fossil fuels towards less carbon intensive energy sources such as hydrogen and renewable energy [4,5]. In regard to the reduction of CO_2 in the atmosphere, two major strategies have been proposed: CO_2 capture and storage, or usage of CO_2 [4,6–12]. The usage of CO_2 is particularly promising as increasing amounts of low-cost and relatively pure CO_2 from current and scheduled plants for carbon capture and storage will be available at nearly zero cost [13].

Among different catalytic conversion processes of CO_2 , the hydrogenation of CO_2 to methane, so-called CO_2 methanation, is attractive: the reaction can be carried out under atmospheric pressure, the produced CH_4 can be directly injected into already existing natural gas pipelines, and it can be used as a fuel or raw material for production of other chemicals [10]. Thus, CO_2 methanation can serve as a tool for H_2 produced from renewable resources to be efficiently utilized as an energy vector since transportation of H_2 is limited due to its low volumetric energy density [14].

CO₂ methanation via heterogeneous catalysts has received considerable attention in recent years [3,10,15]. Numerous supported metals, such as Ni, Ru, Rh, Pd, Co, and Mg on various oxide supports, including TiO₂, SiO₂, Al₂O₃, CeO₂, MgO and ZrO₂, have been investigated [16–23]. The main research objective has been to obtain the best catalytic performance in terms of stability, selectivity, CO₂ conversion, and CH₄ production, especially aimed at mild reaction conditions (i.e. low reaction temperature). Ru/TiO₂ catalyst is widely recognized as one of the most attractive formulation [15,24–29], allowing to obtain ~100% selectivity to methane when operating under mild reaction conditions (e.g. at atmospheric pressure and ~200 °C or lower). Yet, the structure-performance relationship appears to be a key

* Corresponding authors. E-mail addresses: damien.debecker@uclouvain.be (D.P. Debecker), capucine.sassoye@upmc.fr (C. Sassoye).

http://dx.doi.org/10.1016/j.apcatb.2017.08.058

0926-3373/@ 2017 Elsevier B.V. All rights reserved.

Received 22 May 2017; Received in revised form 7 August 2017; Accepted 17 August 2017 Available online 24 August 2017

for the development of high performance catalysts.

The crystal structure of TiO₂ support was shown to play an important role that dictates the morphology of Ru species, thereby affecting the catalytic performance in CO₂ methanation. In a recent contribution, we showed that Ru/TiO₂ catalyst supported on the commercial TiO₂-P25 from Degussa, which is composed of 20% rutile and 80% anatase phases, presents the highest catalytic performance compared to Ru/TiO₂ catalysts supported on pure anatase TiO_2 or rutile TiO_2 [24]. Our observations were in accordance with the previously reported studies in which highly dispersed and stable RuO₂ species were formed on rutile TiO₂ owing to the lattice matching with rutile TiO₂ support in HCl oxidation [30-32] and CO_2 methanation [28].

The high catalytic performance was found to be correlated to the high Ru dispersion, which itself was dictated by three phenomena [24]. First, thin layers of RuO₂ were formed on the rutile TiO₂ particles during annealing, owing to the lattice matching between rutile TiO₂ and rutile RuO₂ phases. These species generate highly dispersed Ru nanoparticles upon reduction [33]. This behavior is the opposite to the case of the anatase TiO₂ support onto which RuO₂ sinters heavily, leading to extremely low Ru dispersion in the final catalyst. Second, on the mixed support, we evidenced the migration of RuO₂ nanoparticles from anatase particles to rutile particles, where they maintained a good dispersion. Third, the homemade supports suffered from heavy sintering upon annealing which resulted in a significant loss of specific surface area and - more importantly - in the trapping of RuO₂ layers by sandwiching between rutile TiO₂ rods. Thus the mixed support allowed reaching higher performance because (i) it contained rutile TiO₂ particles which favor the dispersion of the Ru phase and (ii) it contains anatase TiO₂ particles from which Ru migrates, but which impede the sintering of rutile TiO₂ particles.

In this contribution, we present experimental data to elucidate the origin of such beneficial effect of mixing anatase and rutile. Ru/ TiO₂ catalysts are prepared by deposition of pre-synthesized RuO₂ nanoparticles on mixtures of rutile and anatase TiO₂ with various mixing ratios while keeping other parameters constant (Ru loading and annealing condition). Rutile and anatase phases are mixed at three different stages of catalyst preparation, i.e. before RuO2 deposition, before annealing, or after annealing. For those catalysts based on mixed supports at various ratio of rutile to anatase, we define "synergy" as the result of greater methane production rate as compared to the weighted average methane production rate of the pure rutile TiO₂ and pure anatase TiO₂ supported catalysts. We verify whether higher activity can be explained by the formation of more active Ru species or whether it is simply governed by dispersion. Both homemade and commercial rutile and anatase TiO₂ are exploited in an attempt to separate the crystalline structural effect from the effect of thermal stability (vs. sintering).

Fig. 1. Schematics of mixing anatase and rutile TiO2 phases at different stages of catalyst preparation. The three routes are denoted "mixing 1", "mixing 2" and "mixing 3" in the following. Methanation step include in-situ reduction of RuO2 into Ru.

2. Experimental

2.1. Catalyst preparation

Homemade rutile and anatase TiO₂ supports were prepared as previously described [24]. The commercial TiO₂ nanopowder was obtained from Sigma-Aldrich; anatase nanopowder (99.7% trace metal basis, particle size < 25 nm) and rutile nanopowder (99.5% trace metal basis, particle size < 100 nm). A highly stable colloidal suspension of monodispersed RuO_2 nanoparticles [34,35] was obtained by a dropwise addition of 15%v/v H2O2 diluted in H2O into 0.011 M RuCl3xH2O (x = 3-5) dissolved in H₂O so that the final concentration of Ru \approx 0.007 M. The solution was heated at 95 °C for 2 h. Once cooled to room temperature, an appropriate amount of TiO₂ powder was added to the colloidal suspension of RuO2 nanoparticles to yield 2.2 wt.% of Ru in the final catalyst. The mixture was put in an oven at 50 °C overnight and the excess water was removed by rotary evaporation. The resulting powder was then calcined at 450 °C for 16 h in static air (this step is called "annealing" in the following).

To prepare catalysts based on the mixing of two pure supports, the mixing was done at different stages of the preparation. The schematics of catalyst preparation involving the mixing of anatase and rutile TiO₂ phases are shown in Fig. 1.

First, pure rutile and anatase supports were mechanically mixed in various mass ratios (rutile to anatase = 5:5, 3:7, 2:8, 1:9 for homemade TiO_2 supports and rutile to anatase = 5:5, 2:8 for commercial TiO_2 supports) followed by the deposition of RuO₂ NPs, drying and annealing. This procedure is referred to as "mixing 1". The catalysts are denoted as (R + A)55, (R + A)37, (R + A)28, and (R + A)19 for homemade TiO₂ supports and C(R + A)55 and C(R + A)28 for commercial TiO₂ supports respectively, where the numbers indicate the anatase-to-rutile mass ratio and "C" indicates the commercial origin of the supports.

Second, RuO₂ NPs were deposited and dried on rutile and anatase supports separately then mixed in various ratios right before annealing. This procedure is referred to as "mixing 2". The catalysts are noted (R + A)55-BA, (R + A)37-BA, (R + A)28-BA, and (R + A)19-BA for homemade TiO₂ supports and C(R + A)55-BA and C(R + A)28-BA for commercial TiO₂ supports, where "BA" stands for "before annealing".

Third, RuO₂ NPs were deposited and dried on rutile and anatase supports separately, annealed separately (i.e. the complete catalyst preparation procedure), and then mixed in various ratios. This procedure is referred to as "mixing 3". The catalysts are noted (R + A)55-AA, (R + A)37-AA, (R + A)28-AA, and (R + A)19-AA for homemade TiO₂ supports and C(R + A)55-AA and C(R + A)28-AA for commercial TiO₂ supports, where "AA" stands for "after annealing".

For comparison, pure anatase supported catalysts and pure rutile supported catalysts were prepared and denoted as A100 and R100 for Download English Version:

https://daneshyari.com/en/article/6453678

Download Persian Version:

https://daneshyari.com/article/6453678

Daneshyari.com