Contents lists available at ScienceDirect

### Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Research paper

# Highly selective photocatalytic conversion of CO<sub>2</sub> by water over Ag-loaded SrNb<sub>2</sub>O<sub>6</sub> nanorods

Rui Pang<sup>a</sup>, Kentaro Teramura<sup>a,b,\*</sup>, Hiroyuki Asakura<sup>a,b</sup>, Saburo Hosokawa<sup>a,b</sup>, Tsunehiro Tanaka<sup>a,b,\*</sup>

<sup>a</sup> Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan <sup>b</sup> Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

#### ARTICLE INFO

Article history: Received 25 April 2017 Received in revised form 8 June 2017 Accepted 17 June 2017 Available online 24 June 2017

Keywords: Photocatalytic conversion of CO<sub>2</sub> H<sub>2</sub>O SrNb<sub>2</sub>O<sub>6</sub> Nanorods Ag cocatalyst

#### ABSTRACT

Strontium niobates (SrNb<sub>2</sub>O<sub>6</sub> and Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub>) with regular nanostructures were synthesized by a facile flux method. Ag-loaded SrNb<sub>2</sub>O<sub>6</sub> and Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub> exhibited different performances for the photocatalytic reduction of CO<sub>2</sub> in H<sub>2</sub>O. Compared to Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub> nanoflakes and SrNb<sub>2</sub>O<sub>6</sub> nanoparticles, SrNb<sub>2</sub>O<sub>6</sub> nanorods exhibited higher photocatalytic activity and selectivity toward CO evolution. Stoichiometric amounts of CO (51.2  $\mu$ mol h<sup>-1</sup>) and H<sub>2</sub> (1.1  $\mu$ mol h<sup>-1</sup>) as the reduction products, in addition to O<sub>2</sub> (24.8  $\mu$ mol h<sup>-1</sup>) as the oxidation product, were obtained, indicating that H<sub>2</sub>O serves as an electron donor in the photocatalytic conversion of CO<sub>2</sub>. In addition, the effect of the Ag cocatalyst on the photocatalytic conversion of CO<sub>2</sub> was investigated.

© 2017 Elsevier B.V. All rights reserved.

#### 1. Introduction

Carbon dioxide (CO<sub>2</sub>), which is one of the major contributors to the greenhouse gas effect, has become a worldwide environmental burden because of fossil fuel consumption [1–4]. As a result, supplementing the natural carbon cycle and addressing climate change are imperative. The conversion of CO<sub>2</sub> to other valuable chemical compounds, e.g. CO, HCOOH, HCHO, CH<sub>3</sub>OH, and CH<sub>4</sub>, under ambient temperature and pressure conditions has attracted considerable attention as a sustainable strategy to solve environmental and energy issues [5-9], especially conversion of CO<sub>2</sub> into CO, which is widely studied in recent years as an alternative route to produce syngas components [10,11]. Since the discovery of the photoreduction of CO<sub>2</sub> into organic compounds using various semiconductors by Inoue et al. [5,12], several studies on the semiconductor-based photocatalytic conversion of CO<sub>2</sub> using H<sub>2</sub>O as an electron donor have been reported [13-18]. Nevertheless, the selective activation of CO<sub>2</sub> by electrons and suppression of H<sub>2</sub> evolution in an aqueous solution are difficult because the redox potential of  $H^+/H_2$  (-0.41 V vs. NHE, at pH 7) is more positive than that of  $CO/CO_2$  (-0.51 V

E-mail addresses: teramura@moleng.kyoto-u.ac.jp (K. Teramura), tanakat@moleng.kyoto-u.ac.jp (T. Tanaka).

http://dx.doi.org/10.1016/j.apcatb.2017.06.052 0926-3373/© 2017 Elsevier B.V. All rights reserved. vs. NHE, at pH 7) [19,20]. Previously, our group has reported high activity for Ag-loaded ZnGa<sub>2</sub>O<sub>4</sub>-modified Ga<sub>2</sub>O<sub>3</sub> [21,22], La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> [23], SrO-modified Ta<sub>2</sub>O<sub>5</sub> [24], ZnGa<sub>2</sub>O<sub>4</sub> [25], Sr<sub>2</sub>KTa<sub>5</sub>O<sub>15</sub> [26], and ZnTa<sub>2</sub>O<sub>6</sub> [27] for the photocatalytic conversion of CO<sub>2</sub> by H<sub>2</sub>O under UV irradiation. Ag cocatalysts are well known to be effective for the conversion of CO<sub>2</sub> to CO in aqueous solutions [12,28,29]. However, still only a few photocatalysts have been reported, which exhibit high activity and selectivity for the photocatalytic conversion of CO<sub>2</sub> by H<sub>2</sub>O, even with the modification of a Ag cocatalyst. Hence, it is imperative to develop highly efficient photocatalysts for CO<sub>2</sub> reduction using water as the electron donor.

Niobium-containing materials, e.g.,  $SrNb_2O_6$  and  $Sr_2Nb_2O_7$ , have been reported as promising candidates for water splitting because of their attractive layered crystal structures, containing the  $[NbO_6]$  octahedra that can be distorted, and the high energy of the Nb 4d orbitals [30–34]. These structural advantages of niobiumbased materials also make them promising for the photocatalytic reduction of CO<sub>2</sub>. Nevertheless, only a few studies have reported the photocatalytic performance of niobium-based photocatalysts for CO<sub>2</sub> reduction, and the reported activities and selectivities were not satisfactory [35–37]. An inerratic nanostructure for a photocatalyst has been reported to not only increase active sites for the photocatalytic reduction of CO<sub>2</sub> in the presence of H<sub>2</sub>O but also promote the separation of oxidation and reduction sites because of its anisotropic effect [12,26,38,39].







<sup>\*</sup> Corresponding authors at: Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.



Fig. 1. XRD patterns of (a) SrNb<sub>2</sub>O<sub>6</sub> and (b) Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub> fabricated by a flux method.

In this study, two strontium niobates (e.g.  $SrNb_2O_6$  and  $Sr_2Nb_2O_7$ ) with regular nanostructures were synthesized by a flux method, and their performance in the photocatalytic conversion of  $CO_2$  in  $H_2O$  was investigated. After modification with a Ag cocatalyst,  $SrNb_2O_6$  with a nanorod structure exhibited higher photocatalytic activity and selectivity toward CO evolution compared to  $Sr_2Nb_2O_7$  with a nanoflake structure and  $SrNb_2O_6$  with a nanoparticle structure. In addition, the effects of the Ag cocatalyst on the photocatalytic conversion of  $CO_2$  were discussed.

#### 2. Experimental

#### 2.1. Photocatalyst preparation

SrNb<sub>2</sub>O<sub>6</sub> and Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub> were prepared by a flux method. To fabricate SrNb<sub>2</sub>O<sub>6</sub>, 2 g of Nb<sub>2</sub>O<sub>5</sub> powder (99.9%, Wako) and 6 g of SrCl<sub>2</sub>·6H<sub>2</sub>O (99.9%, Wako) were ground in an alumina mortar for 5 min. SrCl<sub>2</sub>·6H<sub>2</sub>O was used as the precursor and flux reagent. The mixture was calcined in air using an alumina crucible at 1173 K for 2 h. After calcination, the obtained powder was thoroughly washed three times with hot water (353 K) to remove the residual salt and dried at 353 K in an oven. The process of synthesizing Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub> was almost the same as that of synthesizing SrNb<sub>2</sub>O<sub>6</sub>, except for the use of SrCO<sub>3</sub> (99.9%, Wako) as the precursor. Modification using a Ag cocatalyst was performed by chemical reduction (CR), impregnation (IMP), and photodeposition (PD) methods. For modification by CR method, the obtained  $SrNb_2O_6$  or  $Sr_2Nb_2O_7$  (1.5 g) was suspended into a 50 mL aqueous solution of AgNO<sub>3</sub> (0.1 M), followed by the dropwise addition of a NaPH<sub>2</sub>O<sub>2</sub> (0.4 M) solution into the suspension. After stirring the mixture at 358 K for 1.5 h, it was filtered and dried at room temperature. For modification by IMP method, SrNb<sub>2</sub>O<sub>6</sub> (1.5 g) was homogeneously dispersed in an aqueous AgNO<sub>3</sub> solution, followed by evaporation at 358 K to remove water and calcination at 723 K for 2 h in air. Modification by PD method was carried out in situ during the photocatalytic

conversion of CO<sub>2</sub>. The synthetic details have been reported in our previous studies [24,27]. Generally, 1.5 g of SrNb<sub>2</sub>O<sub>6</sub> powder was dispersed in 1.0 L of ultra-pure water containing a required amount of AgNO<sub>3</sub>, and the dissolved air in the solution was completely degassed by a flow of Ar gas. The suspension was irradiated under a 400 W high-pressure Hg lamp with a quartz filter using an inner-irradiation-type reaction vessel with Ar gas flowing for 1.5 h, followed by filtration and dried at room temperature.

#### 2.2. Characterization

The crystal phase and structure of the samples were observed by powder X-ray diffractometry (Rigaku Multiflex) with Cu K $\alpha$  radiation ( $\lambda$  = 0.154 nm) at a scan rate of 4° min<sup>-1</sup>. Sample morphologies were observed by field-emission scanning electron microscopy (FE-SEM, SU-8220, Hitachi High Technologies) and transmission electron microscopy (TEM, JEM-2100F). The Brunauer–Emmett–Teller surface areas of the photocatalysts were measured by their N<sub>2</sub> adsorption isotherms at 77 K using a volumetric gas adsorption apparatus (BELSORP-mini II, BEL Japan, Inc.). Prior to the measurements, each sample was evacuated at 473 K for 1 h using a pretreatment system (BELPREP-vacII, BEL Japan, Inc.). UV–vis diffuse-reflectance spectra were recorded on a UV–visible spectrometer (V-650, JASCO) equipped with an integrated sphere accessory.

#### 2.3. Photocatalytic reaction

The photocatalytic conversion of  $CO_2$  was carried out using a flow system with an inner-irradiation-type reaction vessel at ambient pressure. First, the synthesized photocatalyst (0.5 g) was dispersed in ultrapure water (1.0 L) containing 0.1 M NaHCO<sub>3</sub>. Second,  $CO_2$  was bubbled into the solution at a flow rate of 30 mL min<sup>-1</sup>. Third, the suspension was illuminated using a 400-W high-pressure mercury lamp with a quartz filter connected to a Download English Version:

## https://daneshyari.com/en/article/6453846

Download Persian Version:

https://daneshyari.com/article/6453846

Daneshyari.com