Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/09263373)

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Research paper

Highly selective photocatalytic conversion of $CO₂$ by water over Ag-loaded $SrNb₂O₆$ nanorods

Rui Pang^a, Kentaro Teramura^{a, b,}*, Hiroyuki Asakura^{a, b}, Saburo Hosokawa^{a, b}, Tsunehiro Tanaka^{a,b,∗}

^a Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan ^b Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

a r t i c l e i n f o

Article history: Received 25 April 2017 Received in revised form 8 June 2017 Accepted 17 June 2017 Available online 24 June 2017

Keywords: Photocatalytic conversion of CO₂ $H₂O$ $SrNb₂O₆$ Nanorods Ag cocatalyst

A B S T R A C T

Strontium niobates (SrNb₂O₆ and Sr₂Nb₂O₇) with regular nanostructures were synthesized by a facile flux method. Ag-loaded SrNb₂O₆ and Sr₂Nb₂O₇ exhibited different performances for the photocatalytic reduction of CO₂ in H₂O. Compared to Sr₂Nb₂O₇ nanoflakes and SrNb₂O₆ nanoparticles, SrNb₂O₆ nanorods exhibited higher photocatalytic activity and selectivity toward CO evolution. Stoichiometric amounts of CO (51.2 µmol h⁻¹) and H₂ (1.1 µmol h⁻¹) as the reduction products, in addition to O₂ (24.8 µmol h⁻¹) as the oxidation product, were obtained, indicating that H_2O serves as an electron donor in the photocatalytic conversion of $CO₂$. In addition, the effect of the Ag cocatalyst on the photocatalytic conversion of $CO₂$ was investigated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Carbon dioxide ($CO₂$), which is one of the major contributors to the greenhouse gas effect, has become a worldwide environmental burden because of fossil fuel consumption [\[1–4\].](#page--1-0) As a result, supplementing the natural carbon cycle and addressing climate change are imperative. The conversion of $CO₂$ to other valuable chemical compounds, e.g. CO, HCOOH, HCHO, CH₃OH, and CH₄, under ambient temperature and pressure conditions has attracted considerable attention as a sustainable strategy to solve environmental and energy issues $[5-9]$, especially conversion of $CO₂$ into CO, which is widely studied in recent years as an alternative route to produce syngas components $[10,11]$. Since the discovery of the photoreduction of $CO₂$ into organic compounds using various semiconductors by Inoue et al. [\[5,12\],](#page--1-0) several studies on the semiconductor-based photocatalytic conversion of $CO₂$ using $H₂O$ as an electron donor have been reported [13-18]. Nevertheless, the selective activation of $CO₂$ by electrons and suppression of $H₂$ evolution in an aqueous solution are difficult because the redox potential of H^+/H_2 (-0.41 V vs. NHE, at pH 7) is more positive than that of $CO/CO₂$ (-0.51 V

E-mail addresses: teramura@moleng.kyoto-u.ac.jp (K. Teramura), tanakat@moleng.kyoto-u.ac.jp (T. Tanaka).

vs. NHE, at pH 7) [\[19,20\].](#page--1-0) Previously, our group has reported high activity for Ag-loaded ZnGa₂O₄-modified Ga₂O₃ [\[21,22\],](#page--1-0) La₂Ti₂O₇ [\[23\],](#page--1-0) SrO-modified Ta₂O₅ [\[24\],](#page--1-0) ZnGa₂O₄ [\[25\],](#page--1-0) Sr₂KTa₅O₁₅ [\[26\],](#page--1-0) and $ZnTa_2O_6$ [27] for the photocatalytic conversion of CO₂ by H₂O under UV irradiation. Ag cocatalysts are well known to be effective for the conversion of $CO₂$ to CO in aqueous solutions [\[12,28,29\].](#page--1-0) However, still only a few photocatalysts have been reported, which exhibit high activity and selectivity for the photocatalytic conversion of $CO₂$ by H₂O, even with the modification of a Ag cocatalyst. Hence, it is imperative to develop highly efficient photocatalysts for $CO₂$ reduction using water as the electron donor.

Niobium-containing materials, e.g., $SrNb₂O₆$ and $Sr₂Nb₂O₇$, have been reported as promising candidates for water splitting because of their attractive layered crystal structures, containing the $[NbO₆]$ octahedra that can be distorted, and the high energy of the Nb 4d orbitals [\[30–34\].](#page--1-0) These structural advantages of niobiumbased materials also make them promising for the photocatalytic reduction of $CO₂$. Nevertheless, only a few studies have reported the photocatalytic performance of niobium-based photocatalysts for $CO₂$ reduction, and the reported activities and selectivities were not satisfactory [\[35–37\].](#page--1-0) An inerratic nanostructure for a photocatalyst has been reported to not only increase active sites for the photocatalytic reduction of $CO₂$ in the presence of $H₂O$ but also promote the separation of oxidation and reduction sites because of its anisotropic effect [\[12,26,38,39\].](#page--1-0)

[∗] Corresponding authors at: Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

Fig. 1. XRD patterns of (a) SrNb₂O₆ and (b) Sr₂Nb₂O₇ fabricated by a flux method.

In this study, two strontium niobates (e.g. $SrNb₂O₆$ and $Sr₂Nb₂O₇$) with regular nanostructures were synthesized by a flux method, and their performance in the photocatalytic conversion of $CO₂$ in H₂O was investigated. After modification with a Ag cocatalyst, $SrNb₂O₆$ with a nanorod structure exhibited higher photocatalytic activity and selectivity toward CO evolution compared to $Sr₂Nb₂O₇$ with a nanoflake structure and $SrNb₂O₆$ with a nanoparticle structure. In addition, the effects of the Ag cocatalyst on the photocatalytic conversion of $CO₂$ were discussed.

2. Experimental

2.1. Photocatalyst preparation

 $SrNb₂O₆$ and $Sr₂Nb₂O₇$ were prepared by a flux method. To fabricate SrNb₂O₆, 2 g of Nb₂O₅ powder (99.9%, Wako) and 6 g of $SrCl₂·6H₂O$ (99.9%, Wako) were ground in an alumina mortar for 5 min. $SrCl₂·6H₂O$ was used as the precursor and flux reagent. The mixture was calcined in air using an alumina crucible at 1173K for 2 h. After calcination, the obtained powder was thoroughly washed three times with hot water (353K) to remove the residual salt and dried at 353K in an oven. The process of synthesizing $Sr₂Nb₂O₇$ was almost the same as that of synthesizing $SrNb₂O₆$, except for the use of $SrCO₃$ (99.9%, Wako) as the precursor. Modification using a Ag cocatalyst was performed by chemical reduction (CR), impregnation (IMP), and photodeposition (PD) methods. For modification by CR method, the obtained $SrNb₂O₆$ or $Sr₂Nb₂O₇$ (1.5 g) was suspended into a 50 mL aqueous solution of $AgNO₃$ (0.1 M), followed by the dropwise addition of a NaPH₂O₂ (0.4 M) solution into the suspension. After stirring the mixture at 358K for 1.5 h, it was filtered and dried at room temperature. For modification by IMP method, $SrNb₂O₆$ (1.5 g) was homogeneously dispersed in an aqueous $AgNO₃$ solution, followed by evaporation at 358K to remove water and calcination at 723K for 2 h in air. Modification by PD method was carried out in situ during the photocatalytic conversion of $CO₂$. The synthetic details have been reported in our previous studies $[24,27]$. Generally, 1.5 g of SrNb₂O₆ powder was dispersed in 1.0 L of ultra-pure water containing a required amount of $AgNO₃$, and the dissolved air in the solution was completely degassed by a flow of Ar gas. The suspension was irradiated under a 400W high-pressure Hg lamp with a quartz filter using an inner-irradiation-type reaction vessel with Ar gas flowing for 1.5 h, followed by filtration and dried at room temperature.

2.2. Characterization

The crystal phase and structure of the samples were observed by powder X-ray diffractometry (Rigaku Multiflex) with Cu K α radiation (λ = 0.154 nm) at a scan rate of 4° min⁻¹. Sample morphologies were observed by field-emission scanning electron microscopy (FE-SEM, SU-8220, Hitachi High Technologies) and transmission electron microscopy (TEM, JEM-2100F). The Brunauer–Emmett–Teller surface areas of the photocatalysts were measured by their $N₂$ adsorption isotherms at 77K using a volumetric gas adsorption apparatus (BELSORP-mini II, BEL Japan, Inc.). Prior to the measurements, each sample was evacuated at 473K for 1 h using a pretreatment system (BELPREP-vacII, BEL Japan, Inc.). UV–vis diffuse-reflectance spectra were recorded on a UV–visible spectrometer (V-650, JASCO) equipped with an integrated sphere accessory.

2.3. Photocatalytic reaction

The photocatalytic conversion of $CO₂$ was carried out using a flow system with an inner-irradiation-type reaction vessel at ambient pressure. First, the synthesized photocatalyst (0.5 g) was dispersed in ultrapure water $(1.0 L)$ containing 0.1 M NaHCO₃. Second, $CO₂$ was bubbled into the solution at a flow rate of 30 mL min−1. Third, the suspension was illuminated using a 400- W high-pressure mercury lamp with a quartz filter connected to a

Download English Version:

<https://daneshyari.com/en/article/6453846>

Download Persian Version:

<https://daneshyari.com/article/6453846>

[Daneshyari.com](https://daneshyari.com)