ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Review

Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts

K. Saravanan^a, Hyungwon Ham^a, Noritatsu Tsubaki^b, Jong Wook Bae^{a,*}

- ^a School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
- b Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan

ARTICLE INFO

Article history: Received 5 February 2017 Received in revised form 4 April 2017 Accepted 29 May 2017 Available online 7 June 2017

Keywords:
Syngas
Dimethyl ether
Copper-based catalyst
Alumina
Zeolites
Bifunctional (hybrid) catalysts

ABSTRACT

The recent rising demand of renewable energies and climate changes has been driving intensive academic researches into new chemical routes to sustainable and clean fuel productions in order to meet the demands of industrial evolution by solving energy crisis due to limited fossil fuel reservoirs and increasing environmental pollutants. Dimethyl ether (DME) is a multi-purpose synthetic fuel and chemical that can be used as an excellent alternative to diesel fuel and liquefied petroleum gas (LPG). The present review paper briefly provides an overview of the recent developments for a direct synthesis of DME from synthesis gas (syngas, CO+H2) over some hybridized bifunctional heterogeneous catalysts composed of copper-based hydrogenation catalysts with solid acid components such as alumina or zeolites mainly, where the catalytic activities significantly depend on its properties influenced by synthesis protocols, porosities, surface areas, interactions of active metals with supports, distributions of metal particles on the supports and so on. We have also briefly covered the hydrogenation of CO₂, a model reaction for the utilization of CO₂ containing in syngas, to produce DME and thereby significantly mitigate its environmental impacts. Furthermore, the catalytic performances of the direct synthesis of DME by hydrogenation of carbon oxides were explained in terms of the acid sites of the solid acid catalysts and surface area of metallic copper nanoparticles in the hybridized bifunctional catalysts with their preparation protocols. © 2017 Elsevier B.V. All rights reserved.

Contents

1.	Introd	luction		495
2.	Metho	Methods for synthesis of DME		
			int parameters in DME synthesis	
		2.1.1.	Cu-based catalyst for methanol synthesis	498
		2.1.2.	Solid acid catalyst for methanol dehydration	498
		2.1.3.	Hybrid/bifunctional catalysts	499
3.	Synga	ıs-To-DM	E (STD) synthesis over hybrid/bifunctional catalysts	499
			enation of CO by Cu-based MSC and γ -Al $_2$ O $_3$ -based MDC	500
		3.1.1.	$Cu/ZnO/Al_2O_3$ with γ - Al_2O_3 catalyst	500
		3.1.2.	$Cu/ZnO/Al_2O_3$ with modified γ - Al_2O_3 catalyst	501
		3.1.3.	Modified Cu/ZnO/Al ₂ O ₃ with γ -Al ₂ O ₃ catalyst	502
		3.1.4.	Cu/ZnO with γ -Al $_2$ O $_3$ catalyst	502
		3.1.5.	Mesoporous Cu/γ - Al_2O_3 catalyst	504
	3.2.	Hydroge	enation of CO by Cu-based MSC and zeolites as MDC	505
		3.2.1.	CZA with pure and modified ZSM-5 catalysts	505
		3.2.2.	Pure and modified CZA/ferrierite catalysts	509
	33	Advance	ed methods for preparing hybrid catalysts	510

E-mail address: finejw@skku.edu (J.W. Bae).

^{*} Corresponding author.

	3.4. Reduction of the rate of WGS reaction	511
4.	Miscellaneous hybrid catalysts used for STD process.	511
	DME production from CO ₂ /H ₂ mixtures over hybrid/bifunctional catalysts	
	Conclusions and outlook	
	Acknowledgements	520
	References	

1. Introduction

The energy utilization cycle generally consists of three stages such as an energy generation, distribution and consumption, all of which must be closely balanced for an ideal energy infrastructure [1]. Meanwhile, the world energy consumption is steadily increasing, and thus rapidly depleting energy resources owing to an industrial evolution by generating significant environmental pollutants from an increasing population and globalization [2]. The conventional fossil resources such as crude oil, coal and natural (or shale) gases are the major sources of world's primary energies (Fig. 1a) that are used mostly as fuels (Fig. 1b) [3]. However, when fossil fuels are burnt they predominantly produce CO2 that has been identified as a major source contributing to climate changes. Besides they generate other harmful gases such as SOx and NOx which need to be removed to meet the environmentally acceptable fuel requirements. To limit these unwanted harmful gas increases. some supplements of fossil fuels are prerequisite for a sustainable society [1,4]. Furthermore, the present use of natural resources does not secure the ability of future generations to meet their own energy needs. Although the exploitation of unconventional fossil fuel resources such as shale oil and shale gas could significantly increase the availability of affordable fossil fuels, the impacts of their production on the environment are also raising numerous concerns [5]. The utilization of these fossil and unconventional resources also impair the problems associated with the greenhouse gas emissions (especially, CO₂) and thus it is vital for mankind to find renewable, sustainable and environmentally friendly alternative chemicals for heat, power and transportation and so on.

A great deal of researches has been conducted to meet the rising demands for energy and to mitigate CO_2 emission by developing more sustainable technologies that use the available raw materials like coal, natural gas and biomass [4,6]. Synthesis gas (syngas, mainly $\mathrm{CO} + \mathrm{H}_2$ mixtures), the raw materials for clean fuels and platform chemicals, can be produced from coal, natural gas, biomass and other waste resources. Although, for economic reasons, syn-

gas is now exclusively produced from natural gas and coal, it could be made from any carbon containing feedstock including biomass. Biomass, CO₂ neutral resource, extensively distributed in the world and it is considered as one of the alternative feedstock for the production of fuels and chemicals [7,8].

Two main chemical transformation routes were reported in the literatures for the conversion of syngas into fuels. (1) The production of linear aliphatic hydrocarbons including methane by methanation has been well known by Fischer-Tropsch synthesis (FTS) reaction which can be catalyzed by the supported transition metals such as Ru, Fe and Co. (2) Syngas to methanol which gives dimethyl ether (DME) by dehydration. Both the above routes have been successfully implemented in industry for the production of synthetic fuels [9]. However the former method should require CO₂-free syngas, whereas methanol/DME synthesis route can be conducted in the presence of CO₂-rich syngas and thus it has been considered as a promising method to get synthetic clean fuels and to mitigate CO2 emission. Both methanol and DME can be used as synthetic fuels. Nevertheless, DME provides a high H/C ratio with relatively harmless. Therefore, DME is more preferable and often plays an alternative role to methanol [10]. DME, also called as methoxymethane (CH₃OCH₃), the smallest aliphatic ether, is a nontoxic, non-carcinogenic and non-corrosive compound. DME can be used as an excellent alternative to diesel fuel due to its high cetane number (55-60) and a low emission of CO, NOx in the exhaust gases from a diesel engine as it has no C—C bond structures. It also has similar physical properties as that of liquefied petroleum gas (LPG) and hence can be used as an alternative fuel for cooking and heating [11a]. Furthermore, the well-developed infrastructures of LPG can be adapted for DME and this makes DME outstanding for practical uses [10]. As multisource, multi-purpose clean fuels, it is also projected as a chemical feedstock of the 21st century for the production of hydrocarbon, oxygenates and higher ethers [7]. For instance, there is a huge market value for acetic acid, gasoline and olefins which can be possibly derived from DME (Fig. 2). Since DME having a high H/C ratio and intense energy density, it can be used

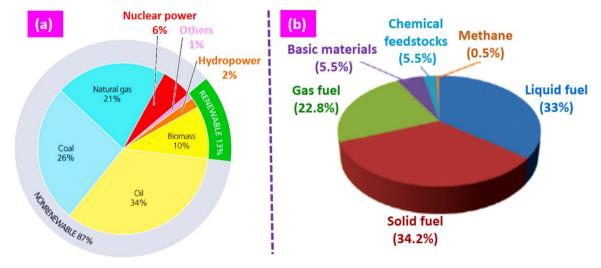


Fig. 1. (a) World's primary energy resources and (b) their uses [modified form of Ref. [3]].

Download English Version:

https://daneshyari.com/en/article/6454010

Download Persian Version:

https://daneshyari.com/article/6454010

<u>Daneshyari.com</u>