ELSEVIER

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Insight into the role of Ti³⁺ in photocatalytic performance of shuriken-shaped BiVO₄/TiO_{2-x} heterojunction

Yunqing Zhu^{a,*,1}, Muhammad Wajid Shah^{a,b,1}, Chuanyi Wang^{a,*}

^a Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
^b University of Chinese Academy of Sciences, Beijing, 100049, China

ARTICLE INFO

Article history: Received 8 August 2016 Received in revised form 13 October 2016 Accepted 18 October 2016 Available online 19 October 2016

Keywords: Heterojunction BiVO₄/TiO_{2-x} Ti³⁺ doping Photocatalysis Band alignment

ABSTRACT

Heterojunction is recognized as an effective approach to improve photocatalytic performance, but a well-matched energy band alignment is critical therein. In this work, the shuriken-shaped BiVO₄/TiO_{2-x} heterojunction is built by engineering the electronic structure of TiO₂ with Ti³⁺ self-doping via a twostep hydrothermal process to achieve a high photocatalytic performance. The presence of Ti³⁺ creates a defect energy level under the conduction band of TiO_2 , and thereby diminishes the interfacial energy barrier between BiVO₄ and TiO₂. The Ti³⁺ defect energy level promotes the electron transfer from BiVO₄ to conduction band of TiO_{2-x} . The test of phenol degradation under 300 W Xenon lamp equipped with UV cut-off filter ($\lambda \ge 420$ nm) demonstrates that BiVO₄/TiO_{2-x} heterojunction exhibits higher photocatalytic activity than its counter parts, pure BiVO₄ and the physic mixture of BiVO₄ and TiO_{2-x}. The improved photocatalytic performance is mainly attributed to the heterojunction formed between BiVO₄ and TiO_{2-x}, which improves the separation of photogenerated charge carriers as support by comparative photocurrent and time-resolved PL spectral measurements. In addition, Ti³⁺ self-doping also narrows the bandgap of TiO₂ and enhances the visible-light activity of TiO₂. The holes of TiO_{2-x} transfer to the valance band of BiVO₄ which further significantly improves the separation of photogenerated charge carriers, further. Additionally, the high surface area caused by TiO_{2-x} also contributes to the improved photocatalytic efficiency.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalysis has received considerable attention for its potential application in many fields, such as environmental remediation using solar energy [1–3]. Various metal oxides have been widely studied as candidate materials for photocatalysis because of their stability and relative abundance. BiVO₄ is recognized as one of the promising photocatalysts, owing to its excellent stability against photocorrosion and chemical corrosion, narrow bandgap (~2.4 eV) in the monoclinic phase, and low cost [4–6]. The direct narrow bandgap makes BiVO₄ as a good light absorber, but its carrier diffusion length (L_d) around 70 nm³ is relatively short due to a high recombination rate of charge carriers [7], which becomes a main factor that restricts its practical applications. Additionally, low sur-

* Corresponding authors.

E-mail addresses: zhuyq@ms.xjb.ac.cn (Y. Zhu), cywang@ms.xjb.ac.cn (C. Wang). ¹ These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.apcatb.2016.10.056 0926-3373/© 2016 Elsevier B.V. All rights reserved. face area and weak surface adsorption ability of micron-sized BiVO₄ are also important issues that strongly limit its application.

To overcome the above stated shortcomings of BiVO₄, various strategies including nanostructure fabrication, heterojuction and surface modification have been explored [8,9]. Among these strategies, heterojunction construction is proposed as one of the most effective approaches to overcome the barrier of charge transfer [10,11]. The built-in electric field formed in the heterojunctions makes the photo generated electrons and holes move into opposite directions, thus prolonging the lifetime of the carriers. The noble metals (such as Ag, Au, or Pt), the carbon nano-materials (graphene) and the semiconductors (such as TiO₂, WO₃, CeO₂, Bi₂WO₆, and CdS) are widely adopted for combining with BiVO₄ to achieve a high efficiency in photocatalysis performance [12–17]. Among these matierials, TiO₂ [18,19] is one of the most representative photocatalysts. TiO₂ is proved to be a promising photocatalyst due to its practicality and strong photocatalytic oxidation capacity [20]. But its wide band gap (\sim 3.2 eV) [21] limits its light absorption to UV range. Therefore, combining of TiO₂ with BiVO₄ could be a potential pathway not only to extend the light absorption of

Scheme 1. Relative energy band levels of $BiVO_4$ and TiO_{2-x} heterojunction by self-doping of $Ti^{3+}.$

TiO₂ to visible range, but also to enhance the transfer of charge carriers by forming heterojunction at the interface. However, the energy band matching is a key factor for achieving a highly effective $BiVO_4/TiO_2$ heterojunctions. It is known that the conduction band of anatase TiO_2 is -0.290 eV vs NHE, [22] while for monoclinic $BiVO_4$, it is 0.074 eV vs NHE [23]. As a result, when the $BiVO_4/TiO_2$ heterojunction is formed, an interfacial energy barrier is present in the interface. Therefore, under visible light irradiation, it is impossible for the generated electrons of $BiVO_4$ to climb over the energy barrier migrating to the conduction band of TiO_2 . The unmatched energy band alignment critically affects the charge carrier migration in the formed $BiVO_4/TiO_2$ heterojunctions, which is one of the reasons for very limited success achieved in this regard.

In our previous work, various strategies were developed to introduce a defect electronic band in TiO₂ by self-doping of Ti³⁺ in the TiO_2 lattice [24–26]. The location of Ti^{3+} induced electronic band is below the conduction band of TiO₂ [27,28] as illustrated in Scheme 1, which reduces the interfacial energy barrier between BiVO₄ and TiO₂, and makes it possible for the migration of electrons from BiVO₄ to the conduction band of TiO₂ (Scheme 1). The Ti³⁺ in TiO₂ matrix can also trigger the visible-light activity of TiO_2 [29–32]. On the other hand, the generated holes of TiO_2 can also transfer to the valance band of BiVO₄. In addition, the TiO_{2-x} prepared according to our previous work exhibits extremely high surface area $(263.95 \text{ m}^2 \text{ g}^{-1})$ [24], which could provide abundant reactive sites for photocatalytic reaction. As supported by the test of photo degrading phenol, the construction of heterojunctions between $BiVO_4$ and TiO_{2-x} is an effective approach towards high photocatalytic performance.

2. Experiment section

2.1. Material preparation

The BiVO₄ and TiO_{2-x} heterojunction was prepared via a twostep hydrothermal process and denoted as BiVO₄/TiO_{2-x}. Typically, the shuriken-shaped BiVO₄ samples were synthesized using an aqueous solution of NH₄VO₃ (6 mM) and Bi (NO₃)₃.5H₂O (6 mM) in 2 M HNO₃ (30 mL) at room temperature, with addition of 100 μ L TiCl₃ solution (20%) as a structure directing agent [33]. The pH of the solution was adjusted to 5 with ammonia (28 wt.%) under vigorous stirring. The obtained mixture was transferred to a Teflon stainless steel autoclave and aged at 180 °C for 12 h. The yellow product of BiVO₄ was filtered and washed with plenty of distilled water/ethanol, and dried at 80 °C overnight. The yellow BiVO₄ powder (0.25 g) was dispersed in water under ultrasonic to form suspension A. Different amounts (0, 0.9, 1.8, 2.2 and 3.6 mmol) of TiCl₃ (20% in HCl solution) and 0.7 g L-ascorbic acid were dissolved in water, and adjusted the pH to 4 by NaOH to form solution B. The solution B was subsequently added to suspension A and stirred for another 60 min. The mixture was then transferred to Teflon stainless steel autoclave and heated at 180 °C for 12 h. The obtained precipitates were collected by centrifugation and rinsed with plenty of distilled water/ethanol. After drying at 80 °C overnight, the materials were collected and labelled as BiVO₄/TiO_{2-x}(X) where X means the amount of Ti(III) precursor.

2.2. Material characterization

The morphologies and the particle sizes of as-prepared $BiVO_4/TiO_{2-x}(X)$ samples were examined by scanning electron microscope (SEM) (FE-SEM, Zeiss Supra55vp, Germany). High resolution transmission electron microscopy (HRTEM) characterization was performed on a JEOL-JEM-2100 electron microscope. X-ray diffraction (XRD) patterns of the samples were collected on a Bruker D8 Advance powder diffractometer over scattering angles from 20° to 80° using Cu K α radiation. Absorption spectra analysis was conducted with a Shimadzu SolidSpec-3700DUV spectrophotometer equipped with diffuse reflectance attachment in a spectraloncoated integrating sphere against spectralon reference. Nitrogen adsorption/desorption isotherms were measured at 77 K on a surface area and porosity analyser (Quantachrome Instruments version 3.0). Xray photoelectron spectra (XPS) of the samples were measured using a Kratos Analytical AMICUS XPS instrument. The Bruker Vertex 70 FT-IR spectrometer was utilized to record FT-IR spectra. The electron paramagnetic resonance (EPR) spectra were recorded by a Bruker E500 Spectrometer. Photoluminescence spectra (PL) were obtained by a fluorescence spectrophotometer (F-7000 FL Spectrophotometer) with a 150 W Xenon lamp as the excitation source at room temperature. The time-resolved PL measurements were performed on a Horiba Fluorolog-3 Spectrofluorometer using the time-correlated single photo counting (TCSPC) method for lifetime measurements, and the film samples were photoexcited using a 450 W X-lamp at wavelength of 340 nm.

2.3. Photocatalytic activity measurement

The photocatalytic activity of as prepared samples was evaluated by a model reaction, i.e., degradation of phenol under visible light. Typically, 40 mL of phenol solution $(20 \, mg \, L^{-1})$ in 50 mL quartz photo-reactor was employed for test. $0.5 \, g \, L^{-1}$ photocatalyst was dispersed into the phenol solution at neutral pH. The solution was stirred in dark for 40 min to obtain adsorption-desorption equilibrium and then irradiated by 300 W Xenon lamp equipped with UV cut-off filter ($\lambda \geq 420 \, m$) at room temperature. 2 mL of aliquots were taken out at given time intervals and centrifuged to remove the photocatalysts particles before analysis of phenol concentration by Thermo Fisher Ultra 3000 HPLC equipped with a 25 cm × 4.6 mm Cosmosil C18 column.

The photo-electrochemical analysis was carried out with a CHI660E instrument using a three-electrode system. 50 mg of a sample photocatalyst was loaded on conductive surface of ITO glass and 0.05 M Na₂SO₄ solution was used as electrolyte. 300 W Xenon lamp equipped with UV cut–off filter ($\lambda \ge 420$ nm) was used as a light source, and standard calomel electrode (SCE) was employed as reference electrode and Pt slice as counter electrode.

3. Result and discussion

Fig. 1 depicts the morphology of $BiVO_4$ and the $BiVO_4/TiO_{2-x}(1.8 \text{ mmol})$ heterojunction. As shown in Fig. 1a,

Download English Version:

https://daneshyari.com/en/article/6454515

Download Persian Version:

https://daneshyari.com/article/6454515

Daneshyari.com