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1. Introduction: the operando spectroscopy methodology

The relationship between catalyst structure, especially surface
structure, and reactivity/selectivity remains the most important
question in modern heterogeneous catalysis because such funda-
mental information would allow for rational design of advanced
catalysts. It is now well-appreciated that catalyst surfaces are
dynamic and are altered by the environmental conditions (T, P, and
gas or liquid composition). Consequently, it is critical to establish
structure-performance relationships for catalysts operating under
relevant reaction conditions given their dynamics.

In situ spectroscopy of heterogeneous catalysts has been
practiced for over 60 years and is an invaluable approach for char-
acterizing catalytic materials over a wide range of environmental
conditions. In situ is Latin for “on site,” “on location,” or “in posi-
tion,” meaning that catalyst characterization is performed under
a controlled atmosphere (vacuum, reducing, oxidizing or reaction
conditions) in an environmental cell or chemical reactor. If the
treatment or reaction is stopped, and the catalyst is moved to a
new location for analysis, then the characterization is referred to
as ex situ, meaning “off-site” or “from site.” The adoption of in situ
spectroscopy by catalyst scientists since 1965 is shown in Fig. 1.

Although its adoption was initially sluggish, the adoption of in situ
spectroscopy for catalyst characterization started to become rapid
during the 1980s and reaching ~480 in situ publications in 2015 in
the catalysis literature.

In situ characterization studies have allowed scientists to
observe catalysts under controlled conditions; however they fall
short of providing a direct relationship between catalyst structure
(bulk/surface) and performance (activity and selectivity) because
of the absence of corresponding reaction product analysis. This is
especially true when performed in vacuum or non-reaction con-
ditions (inert (He, Ar, Ny, etc.), O, or Hy), as most of such studies
tend to be. This limitation of in situ spectroscopy characterization,
can be overcome by simultaneously collecting catalyst character-
ization and online product analysis data and has been referred
to as operando spectroscopy. The term operando was coined by
Miguel A. Banares and is Latin for “working” or “operating” and
first appeared in the catalysis literature in 2002 from several publi-
cations of the Bafiares group [1-4]. By simultaneously performing
time-resolved in situ spectroscopy and online product analysis,
it is possible to directly relate the catalyst surface/bulk structure
with catalyst performance. The operando spectroscopy methodol-
ogy has been quickly adopted by catalyst scientists since 2002 and
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