Applied Thermal Engineering 84 (2015) 126-137

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research paper

Optimal rectangular microchannel design, using simulated annealing, unified particle swarm and spiral algorithms, in the presence of spreading resistance

Jorge Cruz, Iván Amaya^{*}, Rodrigo Correa

Graduate School of Electronic Engineering, Universidad Industrial de Santander, Calle 9 – 27, Ciudad Universitaria, Bucaramanga, Colombia

HIGHLIGHTS

• Rectangular microchannels were modelled considering EGM and thermal spreading.

• The designs were optimized using the SA, UPSO, and SO algorithms.

• All optimization methods yielded good designs but UPSO was more precise.

• We compared combinations of three bulk materials and two working fluids.

• We determined that an aluminum heat sink with ammonia gas was the best design.

ARTICLE INFO

Article history: Received 18 December 2014 Accepted 19 March 2015 Available online 3 April 2015

Keywords: Heat sinks Microelectronics Global optimization Entropy generation minimization Spreading thermal resistance

ABSTRACT

This article focuses on the solution of the mathematical model of a rectangular microchannel through three algorithms: SA (Simulated Annealing), UPSO (Unified Particle Swarm Optimization) and SO (spiral Optimization). The criterion of minimum entropy generation was used for constructing the model, which includes the effect of the thermal spreading resistance. This type of thermal resistance occurs whenever a smaller heat source (e.g. the chip) comes in contact with the base of a larger heat transfer element (e.g. the heat sink). This simulation work was split into two stages. The first one considered different scenarios for a silicon heat sink using air as a working fluid. In this case, volume flow rates between 4.0 and 4.5×10^{-3} m³/s exhibited lower values of entropy generation rate. The second stage considered three materials (silicon, aluminum, and copper) and two working fluids (air and ammonia gas). We found, for this particular set of conditions, that entropy generation becomes minimum, for a given material and working fluid, as long as a volume flow rate of 4.5×10^{-3} m³/s is used. Even so, the best practical configuration found was an aluminum heat sink with ammonia gas. For all the simulations, a marked effect due to the spreading resistance was found, typically ignored in real life applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Almost since the beginning of modern electronics, the problem of heat transfer has been a major issue. Although there has been a huge number of experimental and simulation reports suggesting very clever solutions, it seems there is not a universal one, [1-3]. Among all the proposals, one of them has received special attention, and relates to the use of heat sinks attached to the surface of the electronic element [4-9]. The design of these heat sinks is based on traditional dissipating structures (e.g. pin-fins, plate-fins and microchannels), and the aim is to enhance the thermal efficiency of the heat being transferred from the chip, to the surrounding media [10-14]. Gururatana et al., simulated a 2D pin-fin heat sink under mechanical vibrations. Their results show how the heat transfer rate increased when the frequency was below 500 Hz. In contrast, the pressure drop raised markedly with frequency [12].

After several decades of development, there is now solid knowledge that comes from an approach based on modeling and simulation, as well as, from experimentation [15-17]. Although most of the reported research work deals with hollow channels,

^{*} Corresponding author. Tel.: +57 (7) 6344000x1295.

E-mail addresses: jorge.cruz1@correo.uis.edu.co (J. Cruz), ivan.amaya2@correo.uis.edu.co (I. Amaya), crcorrea@uis.edu.co (R. Correa).

Nomenclature		t	actual iteration or step
	())	t _b	lower plate thickness (
A	area (m²)	Т	average temperature (I
A _{ef}	effective area to convective heat transfer	u	unification factor
Вι	Biot number	UPSO	Unified Particle Swarm
С	dimensionless factor of SA method	$\overline{V}_{\rm f}$	average velocity of the
c_p	average specific heat (J/kg K)		s)
$D_{\rm h}$	hydraulic diameter $\equiv 4H_cw_c/(H_c + 2w_c)$ (m)	\mathbf{V}_{p}	total velocity of a partie
D_{tu}	inner diameter of the supply tubes (m)	Wc	half of the channel wid
E_i	energetic state at <i>i</i> iteration	$w_{\rm p}$	half of the fin thickness
f	Darcy friction factor	W	width (m)
G	volume flow rate (m ³ /s)	x	design variable
$G_{\rm p}$	global velocity component of a particle	X _D	position of a particle
ħ	average convection coefficient (W/m ² K)	•	
$H_{\rm c}$	channel height (m)	Greek s	ymbols
I,	identity matrix for <i>n</i> dimensions	α _c	channel aspect ratio ≡2
k	Thermal conductivity of solid (W/m K)	β	channel-wall ratio $\equiv w_{c}$
$k_{\rm B}$	Boltzmann constant	ΔP	pressure drop across m
k,	thermal conductivity of fluid (W/m K)	ΔT	finite temperature diffe
Ĺ	length (m)	ε	dimensionless value of
Ln	local velocity component of a particle	$\eta_{\rm p}$	efficiency of the wall
n n	dimensions or number of design parameters	$\hat{\theta}$	rotation angle around t
Nc	total number of microchannels	λ	mean free path (m)
Nu _{D.}	Nusselt number base on hydraulic diameter $\equiv D_{\rm b}h_{\rm ave}/k_{\rm f}$	λь	dimensionless paramet
<i>p</i>	actual cvcle	μ	dynamic viscosity of flu
P	pressure (Pa)	ν	kinematic viscosity of f
Pen.	Peclet number base on hydraulic diameter $\equiv D_{\rm b}U_{\rm av}/\alpha_{\rm tb}$	ρ	average density (kg/m ³
\mathbf{P}_{σ}	best position of the swarm	τ	dimensionless value of
\mathbf{P}_{σ}	best position found by each neighborhood	φ1	own trust factor
P _p	best solution found by each particle	φ ₂	swarm trust factor
Pr	Prandtl number $= c_n \mu/k_f$	$\tilde{\Phi}_{\rm b}$	dimensionless paramet
à	uniform heat flux (W/m^2)	Φ	total pump power
۹ Ó	total heat transfer rate (W)	γ	constriction factor
Q r	convergence rate between a point and the origin	Ψ	search agents population
1 r	random number uniformly distributed between zero		5 1 1
1	and one	Subscri	pts
D	thermal resistance (K/M)	a	surrounding or ambien
$\mathcal{M}^{(n)}(\mathbf{A})$	rotation matrix	b	base plate
\mathbf{P}_{0}	Powerful matrix Powerful provide the provided and the provided pr	c	channel
P'	Reynolds number base on nyuraunc diameter = $D_h O_{av}/V$	conv	convection
	grease thermal resistance times unit area ($\prod (N/VV)$)	CV	Control volume
	Simulated Appealing	d	heat sink
ЗЛ 	Simulated Annealing	ea	equivalent
Sgen	total entropy generation rate (W/K)	f	fluid
$\dot{S}_{\text{gen},\Delta P}$	Entropy generation rate due to mass flow (W/K)	i	interface
Ś _{gen ∧T}	Entropy generation rate due to heat transfer (W/K)	р	wall or fin
S n	Stable matrix $\equiv r \mathscr{R}^{(n)}(\theta)$	r tu	supply pipes of fluid flu
SO	Spiral Optimization		- spp.j p.pes of hald it
	A A		

Nomenclature

	t _b	lower plate thickness (m)
	Т	average temperature (K)
	и	unification factor
	UPSO	Unified Particle Swarm Optimization
	$\overline{V}_{\mathrm{f}}$	average velocity of the fluid through the channels (m, s)
	Vp	total velocity of a particle
	w _c	half of the channel width (m)
	$w_{\rm p}$	half of the fin thickness (m)
	Ŵ	width (m)
	x	design variable
	\mathbf{X}_{p}	position of a particle
	Greek s	ymbols
	α_{c}	channel aspect ratio $\equiv 2w_c/H_c$
	β	channel-wall ratio $\equiv w_c/w_p$
	ΔP	pressure drop across microchannel (Pa)
	ΔT	finite temperature difference (K)
	ε	dimensionless value of the heat source
	$\eta_{ m p}$	efficiency of the wall
	θ	rotation angle around the origin
	λ	mean free path (m)
$k_{\rm f}$	λ_{b}	dimensionless parameter
	μ	dynamic viscosity of fluid (Pa s)
	ν	kinematic viscosity of fluid (m ² /s)
th	ρ	average density (kg/m³)
	au	dimensionless value of the base plate thickness
	ϕ_1	own trust factor
	ϕ_2	swarm trust factor
	Φ_{b}	dimensionless parameter
	Φ	total pump power
	χ	constriction factor
	Ψ	search agents population
)	Subscri	pts
	a	surrounding or ambient
	b	base plate
/ν	С	channel
	conv	convection
	CV	Control volume
	d	heat sink
	eq	equivalent
	f	fluid
	i	interface
	р	wall or fin
	tu	supply pipes of fluid flow

Solmus proposed to fill them with a block of graphite foam. This material seems to be more attractive than metal foams for heat removal due to its high thermal conductivity, low density and high specific surface area [16]. His numerical results showed that graphite foam heat sink has a better heat transfer performance when it is compared with aluminum foam heat sink. Though, the later has a lesser pressure drop.

From the simulation point of view, literature reports several strategies for modeling this type of heat transfer problem, such as the thermal resistance model, fin model, two fin-fluid coupled models, and porous medium model, principally. On the other hand, several researches have recently started to explore different

alternatives not only to construct and to solve the mathematical model, but also to design an optimal heat sink that maximizes the heat transfer process. Among those approaches, the Entropy Generation Minimization (EGM) criterion has received much attention because it is based on the second law of thermodynamics, and it incorporates a tradeoff between heat transfer and fluid flow phenomena. Through the EGM criterion, a designer can consider the entropy generation of each component in a given system, as well as phenomena related to the operation of the heat sink regarding the irreversibility of real processes (e.g. pressure drop and finite temperature difference). In this way, it is possible to build an objective function that represents the sum of all components, so appropriate Download English Version:

https://daneshyari.com/en/article/645563

Download Persian Version:

https://daneshyari.com/article/645563

Daneshyari.com