FISEVIER

Contents lists available at ScienceDirect

Journal of CO₂ Utilization

journal homepage: www.elsevier.com/locate/jcou

Photo-induced reduction of CO₂ to CO with hydrogen over plasmonic Ag-NPs/TiO₂ NWs core/shell hetero-junction under UV and visible light

Muhammad Tahir*, Beenish Tahir, Nor Aishah Saidina Amin, Zaki Yamani Zakaria

Chemical Reaction Engineering Group (CREG), Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor Baharu, Johor, Malaysia

ARTICLE INFO

Article history:
Received 28 August 2016
Received in revised form 20 January 2017
Accepted 2 February 2017
Available online 17 February 2017

Keywords: TiO₂ nanowires Ag-nanoparticles CO₂ photoreduction H₂ reductant Surface plasmon resonance Synergistic effect

ABSTRACT

Ag-NPs-promoted TiO₂ nanowires (TiO₂ NWs) core/shell hetero-junction with plasmonic properties for selective CO production in photo-induced CO₂-hydrogen system has been investigated. Ag-NPs were photo-deposited over the TiO₂ NWs and characterized by XRD, TEM, N₂-adsorption-desorption, XPS, UV-vis and PL spectroscopy. Ag-NPs in metal-state were successfully coated on the TiO₂ NWs surface, producing core-shell hetero-junction. Ag-NPs coated over TiO2 NWs exhibited strong absorption of visible light due to localized surface plasmon resonance (LSPR) excitation, trapped electrons and hindered charges recombination rate. The synergistic effect of Ag-NPs coated over TiO2 NWs for CO2 conversion was evaluated in a gas-phase system under UV and visible light irradiation. The plasmonic Ag-NPs/TiO₂ NWs demonstrated excellent photoactivity in the reduction of CO₂ into CO, CH₄ and CH₃OH under visible light irradiation. The results show that 3 wt.% Ag-NPs-loaded TiO2 NWs was found to be the most active, giving the highest CO evolution of 983 μ mole-g-catal. $^{-1}$ h $^{-1}$ at selectivity 98%. This amount of CO produced was 23 times more than the TiO₂ NWs and 109 times larger than the yield of CO produced over the pure TiO₂. More importantly, the quantum yield was substantially enhanced for CO evolution. The LSPR excitation and synergic effect of Ag-NPs which can effectively accelerate the charge separation was proposed to be responsible for the enhancement of photocatalytic activity. The photo-stability of Ag-NPs/TiO₂ NWs evidenced in cyclic runs for selective CO production under visible light, yet photoactivity declined over the irradiation time under UV-light. The reaction mechanism to describe the reaction pathways is also presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The energy shortages and increase of CO₂ concentration in the atmosphere due to growing consumption of fossil fuels have invigorated great concerns in the last few decades. Many approaches have been developed for CO₂ utilization, yet artificial photosynthesis for photocatalytic reduction of CO₂ provides alternative prospective for the storage of solar energy into useful chemicals and fuels [1]. Therefore, conversion of CO₂ into useful carbon sources such as CO, CH₄, CH₃OH HCHO and HCOOH using solar energy is one of the ideal way to address both the global warming and energy shortage problems [2–4]. However, the yield and selectivity reported are below the acceptable level of commercialization. Efficient photocatalytic CO₂ reduction requires

In photocatalytic conversion of CO_2 , TiO_2 is one of the well-studied photocatalysts and has been received increasing attentions due to its advantages such as inexpensive, available in excess, nontoxic, photo-stable and strong oxidative potential [6,7]. However, TiO_2 as a photocatalyst has some disadvantages such as the large band gap energy ($\sim 3.20\,\mathrm{eV}$ for anatase, $\sim 3.0\,\mathrm{eV}$ for rutile) which only allows the absorption of ultraviolet (UV) irradiation [8]. Additionally, it has high recombination rate of photo-generated (e⁻/h⁺) charges and uncontrolled photoreduction selectivity. To improve its photocatalytic performance, many strategies have been developed such as metals-loading, semiconductors coupling and co-catalysts modifications [9–11].

Adding metals to semiconductor to establish metal/semiconductor hetero-junction could enhanced photocatalytic activity under visible light irradiations [12–15]. Recently, metals such as gold (Au), silver (Ag) and copper (Cu) are considered as promising materials for ${\rm CO_2}$ reduction applications for the reason that CO

semiconductor materials that could meet certain stringent criteria [5].

In photocatalytic conversion of CO₂, TiO₂ is one of the

^{*} Corresponding author. E-mail address: mtahir@cheme.utm.my (M. Tahir).

weakly binds on their surfaces [16,17]. Mainly, Cu produced a mixture of hydrocarbons such as CH₄, CH₃OH, C₂H₄ and HCOOH, however, Au and Ag demonstrated highly selective for CO₂ to CO conversion. Many efforts have been performed in the use of these metals to enhance photocatalytic performance of TiO₂. For example, Au-loaded TiO₂ nanoparticles were investigated for selective photocatalytic CO₂ conversion to CO [18], production of CH₄ in the photocatalytic CO₂ reduction reaction using Cu/TiO₂ photocatalyst [19], the use of Pt-Cu₂O-TiO₂ co-catalysts for the reduction of CO₂ to CH₄ [20], Cu-loaded In₂O₃/TiO₂ photocatalysts for the conversion of CO₂ to CH₄ and CH₃OH [21], modification of MWCNT/TiO₂ by Ag for enhanced photocatalytic CO₂ reduction with H₂O to CH₄ and C₂H₄ [22] and incorporation of Cu into TiO₂ for photocatalytic CO₂ reduction to CH₄ [23].

To date, nanostructured titanium dioxide (TiO₂) is of great interest owing to larger surface area with excellent optical and photocatalytic properties, thus offer direct pathways for effectively collecting photons and/or electrons [24–26]. Many types of nanostructured TiO₂ have been investigated such as nanowires, nanosheets, nanorods and nanotubes. However, in the development of visible light responsive TiO₂ nanostructures, narrowing the band gap energy of TiO₂ will establish a benchmark for the sunlight-driven functional materials. Recently, Cu-NPs deposited onto TiO₂ nano-flowers has been reported for enhanced photocatalytic CO₂ reduction with H₂O to CH₃OH [27]. Similarly, photocatalytic CO₂ reduction to CO over Cu-loaded TiO₂ nanotubes arrays has been investigated [28]. Besides, ZnFe₂O₄/TiO₂ nanobelts have been inspected for CO₂ reduction to fuels [29].

On the other hand, plasmonic photocatalysis has been reported as a capable system to improve efficiencies based on their localized surface plasmon resonance (LSPR) effect. More importantly, both Au and Ag have strong plasmonic effects which capable to improve semiconductor efficiency based on their LSPR effect [30,31]. Loading plasmonic Au-NPs over TiO₂ nanowires has been demonstrated as efficient surface modifiers to enhance TiO₂ photoactivity for photocatalytic CO₂ reduction via SPR effect of Au under visible light. Likewise, Au@TiO₂ yolk shell hollow spheres for

plasmon-induced photocatalytic reduction of CO₂ to solar fuels has been investigated [32]. Nevertheless, compared to Au, Ag is much cheaper, which can be used appropriately to enhance TiO₂ photoactivity via LSPR effects photocatalytic CO₂ system. In this case, strongly visible light responsive plasmonic AgX (X = Cl, Br) nanoparticles for photocatalytic reduction of CO₂ to CH₃OH has been reported [33]. Liu et al. [34] reported plasmonic Ag/TiO₂ NRs for CO₂ photoreduction using H₂O reductant under visible light. The enhanced photoactivity of TiO₂ NRs for CO₂ reduction to CH₃OH was evidently due to Ag-NPs SPR effect. Besides, insertion of metallic Ag-NPs onto semiconductor structure reduces the recombination rate of photo-generated charges (e⁻/h⁺) and improves photocatalytic activity [35]. Moreover, size and shape of noble metals show different physical and chemical properties. When metals NPs of different sizes are loaded over the semiconductor surface, they perform different photocatalytic properties [36]. Recently, size dependent effect of Au-loaded in g-C₃N₄/BiOBr/Au system for photocatalytic CO₂ reduction has been reported [37]. It was noticed that different sizes of Au-NPs have synergistic effects to enhance photoactivity under light irradiations. Therefore, it is vital to explore synergistic effects of Ag-NPs co-coated over TiO2 NWs for selective photocatalytic CO2 reduction because of its low cost and higher productivity.

In addition of efficient photocatalysts, the reductant choice is of great importance, as it effects the overall CO_2 reduction process efficiency and products selectivity. In order to achieve the reduction of CO_2 , H_2O is usually fed as a reducing agent. Thermodynamically, photocatalytic conversion of CO_2 with H_2O over heterogeneous photocatalysis is not a favorable process because reduction of H^+ , released from H_2O , usually competes with CO_2 reduction. This is because H_2O reduction potential to genertae H_2 is lower $(0 \, \text{eV})$ than the CO_2 standard reduction potential $(-1.9 \, \text{eV})$. Under such conditions, a reduction competition can be developed between CO_2/H_2O , thus photoreactions would be more favourable for conversion of H_2O to H_2 instead of CO_2 reduction. Recently, we investigated H_2 as a potentially viable reductant for CO_2 reduction to CO_2 reduction to CO_3 reductio

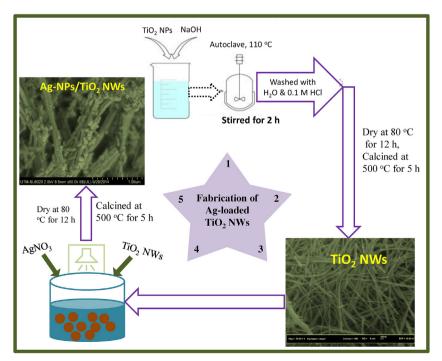


Fig. 1. Schematic presentation for the fabrications of Ag-deposited TiO₂ NWs core-shell hetero-junctions.

Download English Version:

https://daneshyari.com/en/article/6456234

Download Persian Version:

https://daneshyari.com/article/6456234

<u>Daneshyari.com</u>