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a  b  s  t  r  a  c  t

Herein,  we  report  the  aerobic  oxidation  of  several  bio-oils  (pyrolysis  and  microwave)  derived  from
Kraft  lignin  using  oxovanadium  complex  catalyst,  (HQ)2Vv(O)(OiPr)  (HQ  =  8-oxyquinoline)  (2),  ionic
liquid  (IL)-tagged  oxovanadium  complex,  PF6-IL-salen-VIV(O)  (3)  (PF6 = hexafluorophosphate)  and
copper  catalyst  CuX/TEMPO/2,6-lutidine  (4) [X  = OTf,  trifluoro-methanesulfonate),  Cl; TEMPO  = 2,2,6,6-
tetramethylpiperidine-1-oxyl].  Cleavage  of  some  lignin  linkages  and  reduced  phenolic  content  were
observed  by  multinuclear  NMR  spectroscopy,  FT-IR  and  1D/2D  GC/MS  analysis.  Catalyst  2 oxidized  chlo-
roform extracts  of the microwave  bio-oil  more  extensively  than  those  from  the  pyrolysis  bio-oil  although
reactivity  trends  were  similar.  With  catalyst  3  in  [MMIM][MeOSO3], the  phenolic  conversion  was  modest
compared  with  the increase  in carboxyl  and  decrease  in  aliphatic  OH  groups.  IR  spectra  were  consistent
with  phenol  oxidation  to  quinone-type  structures.  In contrast,  copper  catalyst  4 showed  formation  of  high
molecular  weight  compounds  after  oxidation,  likely  resulting  from  radical  recombination.  Comparison
of  reactivity  between  the  different  types  of  lignin-derived  bio-oils  is also  discussed.

© 2016  Published  by  Elsevier  B.V.

1. Introduction

Rapid depletion of petroleum and increasing environmental
concerns are driving the exploration of new alternatives for petro-
chemicals. Lignocellulosic biomass is a promising candidate for the
production of chemicals and materials [1]. It is constituted primar-
ily of hemicellulose, cellulose and lignin; the latter is the most
abundant non-food and renewable aromatic-containing macro-
molecule on Earth [2]. Despite the large production of lignin in the
pulp and paper industry, this material has a limited usage, mostly
as a low-grade fuel.

Pyrolysis can be used to liquefy lignin, facilitating transporta-
tion and storage and potentially increasing its economic value. In
this process, lignin is heated rapidly between 500 and 700 ◦C in
the absence of oxygen to produce a liquid bio-oil [3]. Pyrolysis of
lignin also decreases the molecular weight through cleavage of �-
O-4 linkages (Fig. 1) [4]. In a complementary technique, microwave
reactors are used to produce bio-oils, avoiding temperature gradi-
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ents and formation of the char by-product obtained from thermal
heating [5].

Pyrolysis and microwave bio-oils have a high water and acid
content [6] that triggers their decomposition through radical poly-
merization, generating an intractable mixture [7]. Due to this
instability, valorization of lignin bio-oils has been limited to
hydrodeoxygenation [8], catalytic pyrolysis [9], zeolite cracking
[10] and steam-reforming [11], among others. Oxidation using
inexpensive base metal catalysts and air is an attractive approach
for the depolymerization of lignin [12]. However, oxidation of
bio-oils to produce chemicals is scarce in the literature. Xu et al.
oxidized bio-oils using ozone to convert the aldehyde content into
acids that could then be esterified to improve the fuel properties
[13]. Boateng et al. reported the production of smaller monomers
from pyrolytic lignin using transition metal complexes such as cop-
per, manganese, vanadium and iron [14]. Unfortunately, no further
details of this work have yet appeared in the literature.

Baker et al. reported several oxovanadium (eg., 1 and 2) and
copper/TEMPO/pyridine [TEMPO = 2,2,6,6-tetramethylpiperidine-
1-oxyl] (4) catalysts for the selective cleavage of lignin models using
air as terminal oxidant (Fig. 2) [15]. Control over C C and C H
bond cleavage was  achieved using different solvents and oxovana-
dium(V) catalysts [16]. In one example, cleavage of phenoxyethanol
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Fig. 1. Principal linkages in lignin.

Fig. 2. Oxovanadium and copper catalyst for the oxidation of bio-oils.

lignin models, containing the �-O-4 linkage (the most abundant
in hardwoods), afforded mainly ketone and phenol by C H bond
cleavage, followed by C C bond cleavage of the ketone intermedi-
ate (Scheme 1) [17]. In contrast, the Cu/TEMPO catalyst 4, with the
addition of 2,6-lutidine, effected the selective C C bond cleavage
of �-O-4 and �-1 lignin models, in spite of the poor carbon balance
of these reactions [16a,b]. Recently, we showed that 1 and 2 are
efficient catalysts for reducing the molecular weight of organosolv
lignin, retaining the reactivity observed in lignin models [18].

As a solvent for bio-based transformations, ionic liquids (ILs)
have the advantage of dissolving lignocellulosic biomass and
allowing for fractionation into cellulose, hemicellulose and lignin
components [19a]. Singer and co-workers reported that ionic
liquid-tagged CoIII(salen) complex could be used as a catalyst with
air/oxygen in ILs to selectively oxidize lignin model compound ver-
atryl alcohol to veratryl aldehyde, allowing recycling of the catalyst
and ionic liquid [19b]. Kervinen et al. reported an aerobic oxidation
of veratryl alcohol to an aldehyde in aqueous media using Co(salen)
complexes with various substituents [19c]. Zakzeski et al. reported
that transition metal cobalt salts have shown better activity com-
pared to Co(salen) and Co(porphryin) catalysts for the oxidation
of lignin model compounds, Alcell lignin, and soda lignin in ionic
liquids [19d]. A second advantage of ILs is their compatibility with
microwave heating. It is known that microwave irradiation trig-
gers heating by two main mechanisms – dipolar polarization and
ionic conduction [19e]. Due to their ionic nature, ILs allow for highly
effective interactions with microwave energy for accelerated reac-
tion times and high product yields [19f].

Herein, we report the catalytic oxidation of pyrolysis and
microwave bio-oils with oxovanadium -complex 2, IL-tagged 3
and Cu/TEMPO/lutidine catalyst 4 (Fig. 2) using air as the termi-
nal oxidant. The oxidized fractions were analyzed using IR and
multinuclear NMR  spectroscopy (1H, 13C UDEFT, and 31P of derived
phosphite esters) and GC/MS experiments.

2. Materials and methods

2.1. General considerations

1H and 13C{1H} NMR  spectra were obtained at room tem-
perature on Bruker AV300 MHz, AV400 MHz  or AV500 MHz
spectrometers with chemical shifts (�) referenced to the resid-
ual solvent signal. Deuterated solvents were purchased from
Cambridge Isotope Laboratories and dried with molecular
sieves. Acetonitrile (CH3CN), chloroform (CHCl3), dimethyl-
sulfoxide (DMSO), diethyl ether (Et2O), ethanol (EtOH),
tetrahydrofuran (THF), dimethylformamide (DMF), ethyl
acetate (EtOAc), chromium(III) tris(acetylacetonate), cyclo-
hexanol, 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane
(TMDP), N,N-diisopropylethylamine (DIPEA), CuCl, Cu(OTf)2
(OTf = trifluoromethanesulfonate), TEMPO, 2,6-lutidine and
VO(acac)2 were purchased from Sigma Aldrich or Fisher
Scientific and used without further purification. 1-Ethyl-3-
methylimidazolium acetate, [EMIM][OAc], was  purchased from
Sigma Aldrich and dried under vacuum at 80 ◦C for 6–8 h prior to
use. 1,3-Dimethylimidazolium methyl sulfate, [MMIM][MeOSO3],
was synthesized in our laboratories according to literature pro-
cedures [20]. Microwave and pyrolysis bio-oils were prepared by
our collaborators at École Polytechnique and Western University,
respectively, according to their reported procedures [5,21]. Oxygen
was purchased from Linde Canada. Catalyst 2 was synthesized
according to the published procedure [16d]. Quantitative 31P NMR
spectroscopy experiments were carried out following the reported
procedure [22]. In order to prepare phosphitylation experiments,
bio-oil samples were extracted with CHCl3 or diethyl ether to
reduce the water content. Solvents were then evaporated using
a rotary evaporator followed by high vacuum. Under nitrogen
atmosphere, 25 mg  of bio-oil or the oxidized bio-oil residue was
dissolved in 1.6:1 (v/v) of pyridine/CDCl3 (500 �L) then 50 �L of
TMDP and 5 �L of cyclohexanol were added to the solution. The
reaction mixture was  stirred for 10 min  at room temperature and

Scheme 1. Selective oxidation of phenoxyethanol lignin models using catalyst 2.
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