Applied Thermal Engineering 80 (2015) 288-300

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research paper

Effects of lubricating oil on thermal performance of water-cooled carbon dioxide gas cooler

Applied Thermal Engineering

Baomin Dai^a, Minxia Li^{a,*}, Chaobin Dang^b, Wenfang Yu^a, Yitai Ma^a

^a Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, MOE, Tianjin University, Tianjin 300072, China
^b Department of Human and Engineered Environmental Studies, The University of Tokyo, Chiba 277-8563, Japan

HIGHLIGHTS

• A water-cooled CO₂ gas cooler model was developed and validated to consider the effects of lubricating oil.

• The negative effects of lubricating oil are more significant for gas coolers with small diameters ($D_h < 2 \text{ mm}$).

• Lubricating oil reduces the thermal performance more as the operation pressure approaches the critical pressure.

• High thermal effectiveness can be achieved at a proper water flow rate, but lubricating oil clearly has a negative effect.

ARTICLE INFO

Article history: Received 13 June 2014 Accepted 28 January 2015 Available online 7 February 2015

Keywords: Lubricating oil CO₂ Gas cooler Thermal performance Water-cooled Artificial neural network

ABSTRACT

A water-cooled concentric gas cooler model was developed to examine the negative effects of the presence of polyalkylene glycol (PAG)–type lubricating oil on convective heat transfer. The model was used to analyze the gas cooler performance in detail at different oil concentrations, tube diameters, operation pressures, mass flow rates, and inlet temperatures on the water side. The results show that the entrained lubricating oil had a dominant negative effect on gas coolers with a diameter of less than 2 mm. For CO_2 heat pump/refrigeration systems equipped with water-cooled micro- or mini-channel gas coolers, the lubricating oil retained in the heat exchanger should be minimized. The negative effects of the lubricating oil are dominant for a wide range of operation pressures. However, the deterioration in thermal performance becomes more apparent as the pressure approaches the critical pressure value. Proper determination of the coolant fluid mass flow rate increases the thermal effectiveness of the gas cooler for a wide range of water inlet temperatures, but the reduced heat transfer performance is more pronounced at higher mass flow rates.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing concern over protecting the environment has led to the reconsideration of refrigerants in refrigeration and airconditioning systems. Because they deplete the ozone layer, hydrochlorofluorocarbons (HCFCs) currently in use are being phased out as per international agreement. Hydrocarbons (HFCs) are an alternative, but they have high global warming potential (GWP), so their application faces restrictions in the future. Among the efforts to find a suitable low-GWP substitute, carbon dioxide (CO_2) is considered to be a promising alternative for heat pump devices that provide domestic hot water, work as a standalone water heater, or are coupled with a chiller [1–4]. CO₂ is a nonflammable and nontoxic natural working fluid with zero ozone depletion potential (ODP) and negligible GWP. Moreover, it has favorable thermodynamic and transport properties, low cost, and high availability.

In contrast to traditional working fluids, CO_2 has a relatively low critical temperature (31.1 °C) but a rather high critical pressure (7.38 MPa). Therefore, when it rejects heat to the outside in the summer, CO_2 is in supercritical state with a continuously decreasing temperature in the gas cooler. Compared to the condensation process in traditional cycles, the CO_2 temperature profile matches that of the secondary fluid well; this decreases the

^{*} Corresponding author. Tel.: +86 022 27406040; fax: +86 022 27404741. *E-mail addresses:* dbm@tju.edu.cn (B. Dai), tjmxli@tju.edu.cn (M. Li).

2	o	C
2	ð	5

Nomenclature		app	approach
		b	bulk
Α	area (m ²)	CO ₂	carbon dioxide
c_p	specific heat capacity (kJ/kg K)	cal	calculated
D	diameter (m)	cir	critical
f	friction factor $(-)$	exp	experiment
G	mass flux (kg/m ² s)	f	fluid
h	specific enthalpy (kJ/kg)	h	hydraulic
i	<i>i</i> th finite volume (–)	in	inlet
L	length (m)	max	maximum
т	mass flow rate (kg/s)	out	outlet
п	number of data points (–)	рс	pseudo-critical
Nu	Nusselt number (–)	r	ratio
Pr	Prandtl number (–)	ref	reference
р	pressure (MPa)	spe	specified
Q	heat exchange capacity (kW)	W	water
q	heat flux (kW/m ²)	wall	wall
R	thermal resistance (K/W)		
Re	Reynolds number (–)	Acronyms	
Т	temperature (°C)	ANN	artificial neural network
U	overall heat transfer coefficient (kW/m ² K)	GWP	global warming potential
w	element of weight matrices $(-)$	HCFCs	hydrochlorofluorocarbons
		HFCs	hydrofluorocarbons
Greek symbols		ID	inner diameter
α	heat transfer coefficient (kW/m ² K)	LMTD	logarithmic mean temperature difference
ε	thermal effectiveness (–)	MAE	mean absolute error
λ	thermal conductivity (W/m K)	ODP	ozone depletion potential
ω	oil mass concentration (–)	OD	outside diameter
		PAG	polyalkylene glycol
Subscripts		ε-NTU	effectiveness-number of transfer unit
act	actual		

irreversibility of the heat transfer process and improves the heat transfer efficiency [5]. With the temperature glide in the gas cooler, the water heater can produce hot water with a temperature of as high as 90 °C [6].

In the past decade, many experimental or theoretical studies have examined the overall performance of gas coolers cooled by either air or water [7–25]. Wang and Hihara [21] first developed a numerical model to simulate a counter-flow concentric gas cooler. They analyzed and compared the distributions of the local heat transfer coefficient, heat flux, and CO₂ bulk temperature along the axial direction of the gas cooler from different prediction models. Fronk and Garimella [22,23] conducted an experimental study on the performance of a compact water-coupled CO₂ micro-channel gas cooler and developed an analytical model. They indicated that, for the water-cooled CO₂ cooler, the refrigerant-side resistance is the dominant limiting factor in the heat transfer process. Yu et al. [24] set up a heat exchanger model to investigate the heat transfer behavior of a CO₂ tube-in-tube water-cooled gas cooler. Their calculations showed that the inlet pressure influences the overall heat transfer coefficient and variation in CO₂ temperature. Sánchez et al. [25] developed a model of a water–CO₂ coaxial gas cooler based on the finite volume method that they validated through experiments; they then used the model to examine the influences of operation parameters such as the CO₂ pressure, water mass flow rate, evaporating pressure, and water inlet temperature on the thermal effectiveness of a gas cooler. However, the calculation results using effectiveness-number of transfer unit (*e*-NTU) methodology showed a large deviation with the experimental data.

For a water-cooled gas cooler, the CO₂-side thermal resistance is much less or close to that of the water side [24], especially in the case of a micro-channel gas cooler [23]. Thus, the heat transfer and flow characteristics of supercritical CO₂ being cooled in tubes or channels are important to accurately determining the performance of a water-cooled CO₂ gas cooler.

Many experimental and theoretical studies have been performed to develop good heat transfer and friction methods for the cooling of supercritical CO₂ [26–38] and CO₂ with entrained lubricating oil [39–50]. In particular, Cheng et al. [51] gave a comprehensive summary of the heat transfer and flow characteristics of supercritical CO₂ being cooled in large- and small-scale channels. Wang et al. [52] performed an overview of the effects of lubrication on the heat transfer performance of CO₂. The above research showed that lubricating oil has a severe adverse influence on the heat transfer coefficients and pressure drops of supercritical CO₂ cooling.

In a practical transcritical CO₂ heat pump/refrigeration system, lubricating oil is used in the compressor for lubricating, sealing, cooling, and cleaning purposes. A small amount of lubricating oil entrained with the refrigerant also flows in the system and can be retained in the heat exchangers. Hwang et al. [53] experimentally measured the oil retention ratio in the suction line, evaporator, and gas cooler of a CO₂ transcritical system at different CO₂ mass flow rates and oil concentrations. Their results showed that 2%– 5% of the total oil volume was retained in the gas cooler at a CO₂ mass flow rate of 14 g/s and oil concentration of 1–5 wt%, which also resulted in a large pressure drop. Therefore, the influences of Download English Version:

https://daneshyari.com/en/article/645688

Download Persian Version:

https://daneshyari.com/article/645688

Daneshyari.com