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ABSTRACT

The use of active remote sensing techniques based on light detection and ranging (LiDAR) was investigated here
to estimate the green area index (GAI) of wheat crops. Emphasis was put on the maximum GAI development
stage when saturation effects are known to limit the performances of standard indirect methods based either on
the gap fraction or reflectance measurements. The LiDAR provides both the three dimensional (3D) point cloud
from which the vertical distribution (Z profile) of the interception points is computed, as well as the intensity of
the returned signal from which the green fraction (GF) is derived. The data were interpreted by exploiting the 3D
ADEL-Wheat model that synthesizes the knowledge accumulated on wheat canopy structure. A LiDAR simulator
that accounts for the specific observation configuration used was developed to mimic the actual LiDAR mea-
surements. The in-silico experiments were conducted to generate training and validation dataset. Neural net-
work were then used to estimate GAI from the Z profile and GF derived from the LiDAR measurements.
Performances of GAI estimates by the several methods investigated were evaluated using either experimental
data with 3 < GAI < 6 and data simulated with the 3D structure model with 1 < GAI < 7.

Results confirm that using only the GF provides poor estimates of GAI (0.89 < RMSE < 1.28;
0.22 < rRMSE < 0.31), regardless of turbid medium or realistic assumptions on canopy 3D structure. The
introduction of the Z profile information improved significantly the GAI estimation accuracy
(0.48 < RMSE < 0.55; 0.12 < rRMSE < 0.13). This study demonstrates the interest of using the third di-
mension provided by LiDAR to better estimate GAI in crops under high GAI values. However, this requires the
use of a realistic 3D structure crop model over which the LiDAR data could be simulated under the observational
configuration used.

1. Introduction

estimated in-situ using green fraction measurements (the fraction of
green elements seen from a given direction) derived from downward

Green area index (GAI) is defined as the total one-sided area of
green vegetation elements per unit ground horizontal surface. GAI is
here preferred to leaf area index (LAI) since it includes other green
organs such as stems and ears (Baret et al., 2010; Verger et al., 2014)
that significantly contribute to the canopy photosynthesis, respiration
and transpiration (Bonan, 1993; Weiss et al., 2004). Thus, GAI excludes
the senescent leaf parts that are no more functioning. GAI is commonly
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looking hemispherical digital photography (Weiss et al., 2004) or
imagery acquired with longer focal length (Baret et al., 2010). The
canopy is generally assumed to be a turbid medium to ease the deri-
vation of the GAI using a well-established theory (Nilson, 1971).
However, these GAI estimation methods are limited due to their pro-
hibitive cost (Zheng and Moskal, 2009) when repeated a large number
of times, and the associated accuracy may be compromised by the
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possible violation of the turbid medium assumption. Further, in the case
of field phenotyping applications where the GAI dynamics along the
growth cycle is highly desired (Araus and Cairns, 2014), structural
differences between genotypes that are not well represented by the
turbid medium assumption may degrade the accuracy of the GAI esti-
mates.

Remote sensing techniques including optical passive sensors and
active light detection and ranging (LiDAR) provide efficient ways to
estimate GAI over larger spatial domains. Passive optical methods are
generally based on the calculation of vegetation indices such as the
Normalized Vegetation Difference Index (NDVI) (Baret and Guyot,
1991) or the green fraction when high enough spatial resolution is
available (Baret et al., 2010). These methods are generally showing a
degradation of their performances for the larger GAI values because of
the saturation of the signal. Further, these techniques may be sensitive
to the variation in the illumination conditions that affect vegetation
indices (Stark et al., 2016) as well as the separation between the green
elements and the background (Baret et al., 2010). Conversely to these
passive remote sensing techniques, LiDAR is an active method in-
dependent from the illumination conditions. Further, LiDAR observa-
tions offer a more detailed description of the canopy structure by pro-
viding the third dimension from which more canopy traits of interest
could be potentially retrieved. Recent work has demonstrated its cap-
ability for GAI or LAI estimates over a wide range of values on both
homogenous and heterogeneous forest stands (Béland et al., 2014;
Griebel et al., 2015; Ilangakoon et al., 2015; Korhonen et al., 2011;
Richardson et al., 2009; Zhao and Popescu, 2009) and orchards (Arné
et al., 2013). However, little work has been dedicated to the application
of airborne or ground-based LiDAR systems for GAI estimates for staple
crops.

The relatively little use of LiDAR over crops was mainly due to the
significant footprint of the available systems that were limiting the
description of the fine structure. This limitation is now partly overcome
by some of the current LiDARs as the reduction of footprint size and the
increase of scanning frequency (Eitel et al., 2014; Lin, 2015; Saeys
et al., 2009). Further, the interaction of the laser beam with the canopy
structure is complex (Kukko and Hyyppd, 2009) and specific inter-
pretation algorithms need to be developed to reach the expected level
of accuracy and precision required (Baret and Buis, 2008; Zhao et al.,
2009; Zhao and Popescu, 2009).

Empirical based methods have been derived from available datasets
acquired under specific conditions and instruments (Richardson et al.,
2009). Although these methods are tractable and may perform well for
the cases similar to those prevailing during the calibration experiments,
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Fig. 1. Diagram showing the principles of the synthetic-learning
methodology developed to estimate GAI from ground-based
LiDAR measurements.
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they will provide uncertain performances outside the calibration con-
ditions. Alternatively, laser-canopy interactions could be described
using physically based models. The turbid medium assumption has been
exploited recently by Zhao et al. (2015) to estimate GAI from the gap
fraction measured by LiDAR. Although this approach does not require
any calibration process, the LiDAR-derived gap fraction, hence the es-
timated GAL, may be greatly affected by LiDAR intrinsic setup and ex-
trinsic scanning pattern (Morsdorf et al., 2006; Van der Zande et al.,
2006; Zheng and Moskal, 2009). Moreover, GAI estimates using the
turbid medium assumption provide an effective GAIL Possible clumping
effect has to be corrected to get the actual GAI (Chen et al., 1997).

The limitations of the two approaches to estimate GAI from LiDAR
measurements may be overcome using machine learning techniques
trained over simulations of the LiDAR signal achieved with a realistic
3D description of the canopy structure. The turbid medium assumption
will therefore be no more necessary allowing accessing the true GAI,
because model simulations allow considering the whole range of pos-
sible cases corresponding to what is currently achievable using actual
experimental observations. Afterwards, GAI estimation from synthetic
dataset can be achieved using either a Look-Up-Table (LUT) or a ma-
chine learning method that are both proved to be computationally ef-
ficient as compared with other methods (Baret and Buis, 2008). In this
work, machine learning technique was selected due to its efficiency for
solving problems of high level complexity given a small dimensionality
of inputs (Atzberger, 2004).

The objective of this study is to propose a synthetic learning ap-
proach to estimate the true GAI from ground-based LiDAR measure-
ments as sketched in Fig. 1. The synthetic learning dataset is generated
using the 3D ADEL-Wheat model (Abichou et al., 2013; Fournier et al.,
2003) coupled to a LiDAR simulator mimicking the actual LiDAR
measurements. Machine learning techniques were then trained over the
synthetic dataset to estimate the true GAI corresponding to the LiDAR
measurements. For this purpose, the LiDAR observations were de-
scribed by few features. Further the space of canopy realization may be
reduced to speed up the computation using the available prior in-
formation on the range of possible cases. Finally, the performances of
the method were evaluated over both an independent synthetic dataset
as well as over actual field measurements.
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