Agricultural and Forest Meteorology 247 (2017) 207-220

9 . . . M Agricultural
Contents lists available at ScienceDirect =

an
Forest Meteorology

Agricultural and Forest Meteorology el

journal homepage: www.elsevier.com/locate/agrformet

Improving the accuracy of satellite-based high-resolution yield estimation: A
test of multiple scalable approaches

@ CrossMark

Zhenong Jin*, George Azzari, David B. Lobell

Department of Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, CA, 94305, USA

ARTICLE INFO ABSTRACT

Keywords: Fast, accurate and inexpensive estimates of crop yields at the field scale are useful for many applications. Based
Yield estimation on the Google Earth Engine (GEE) platform, we recently developed a Scalable satellite-based Crop Yield Mapper
Maize (SCYM) that integrates crop simulations with satellite imagery and gridded weather data to generate 30 m
Landsat

resolution yield estimates for multiple crops in different regions. Existing versions of SCYM typically capture
one-third to half of the variation in reported county-scale yields. Using rainfed maize in the US Midwest as an
example, this study tested multiple approaches for improving SCYM’s accuracy, including (i) calibrating the
phenology parameters of the crop model (APSIM) used to generate training samples for SCYM; (ii) using an
ensemble of three crop models (APSIM-Maize, CERES-Maize, and Hybrid-Maize) instead of a single model; (iii)
using simulated biomass from the crop models instead of simulated yields to train SCYM, with the former
assuming a constant harvest index (HI). Results show substantial improvement in performance, as assessed using
reported county yields by USDA-NASS, both from calibrating APSIM phenology parameters and from training
SCYM on simulated biomass rather than yields. Using a multi-model ensemble further improves SCYM, although
the benefit is limited. The proposed preferred version of SCYM on average captures 75% of the yield variation for
2001-2015 in the 3I states (i.e. Illinois, Indiana and Iowa) where SCYM is trained, with RMSE typically less than
1 t/ha, and explains 41% to 83% of multi-year yield variations when tested across nine Midwestern US states for
2008-2015. This level of accuracy is particularly notable given that only data from 2014 were used to calibrate
phenology parameters. The yield estimates for multiple years in multiple states utilized 1184 Landsat tiles, but
could be completed in about 2 h per year by using the GEE platform. All approaches tested in this study do not
require any site-specific measurements, and thus can be readily extended to other regions and crops.

Google earth engine

1. Introduction

Global demand for agricultural crops for use as food, feed and
bioenergy will continue to grow in the coming decades, thereby in-
creasing competition for land and water (Alexandratos and Bruinsma,
2012). Agricultural production thus has to be intensified through more
efficient farm management, which in turn will require better knowledge
of crop yield variation across a range of spatial scales and over time.
Yield estimates at field level, in particular, can be useful for in-
vestigating the spatially variable causes of yield gaps (Lobell, 2013);
estimates over multiple years can be used to generating the spatial
variability of expected field productivity, and hence the required in-
formation for varying management inputs (Diker et al., 2004), as well
as for insurance or land markets (Lobell et al., 2015).

Along with the advance of earth-observing using satellites, a
number of remote sensing approaches have been proposed to predict
yield across a variety of crops and geographic span (see reviews by
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(Atzberger, 2013; Lobell, 2013; Mulla, 2013)), yet substantially more
examples focus on providing estimates at regional scale rather than for
individual field (Lobell et al., 2015). Accurate, scalable and cost-ef-
fective tools of field-level yield mapping remains a challenge, because
of (i) the limited availability of satellite data with fine spatial, spectral
and temporal resolution, (ii) the substantial cost associated with
fetching and processing massive satellite data, and (iii) the lack of
scalable approaches to obtain yields from the imagery. For the latter,
existing approaches often rely on the construction of empirical re-
lationships between satellite observed vegetation indices (VIs) and
yields (Franch et al., 2015; Panda et al., 2010; Sakamoto et al., 2014),
thus requiring new ground-measurement for recalibrating the empirical
model before applying to new areas or other years. Researchers have
also used remote sensing measurements to constrain the inputs or
parameters of crop models that can better accommodate new settings
(Hank et al., 2015; Huang et al., 2015; Ines et al., 2013; Lobell, 2013;
Machwitz et al., 2014). However, the computational cost and input data
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required for these approaches hinder their application on a large scale.

In a previous study (Lobell et al., 2015), we developed an approach
called SCYM (a scalable satellite-based crop yield mapper) that by-
passes the traditional crop model calibration procedure that requires a
range of site-specific ground data. The SCYM approach first generates
several hundred pseudo-observations of daily crop attributes, such as
leaf area index (LAI), as well as final biomass and yield, from crop si-
mulations that span a realistic range of growing conditions by varying
soil, weather, cultivar, fertilizer applications, and sowing date. Next,
simulated daily observations are used to train date-specific statistical
models that relate end-season yield to weather and satellite-observable
VIs (derived from LAI). Finally, these statistical models can be applied
to remote sensing (e.g. Landsat and the Moderate Resolution Imaging
Spectroradiometer (MODIS)) and gridded weather data within the
Google Earth Engine (GEE), a cloud-based platform that can efficiently
access and process large volumes of data, to generate yield estimates on
a pixel-by-pixel basis. Applications of SCYM to maize and soybean in
the US Midwest show that this approach on average captured one-third
of the yield variation at farm level in all state-years (Lobell et al., 2015),
and nearly 50% of the variation when compared with the USDA Na-
tional Agricultural Statistics Service (NASS) reported county-level yield
data (Azzari et al., 2017). Moreover, estimates of spatial variability
within counties agree well with estimates derived from field-level in-
surance data (Lobell and Azzari, 2017). These initial results are fairly
encouraging, given that all data required to implement the SCYM ap-
proach can be easily obtained and that “ground-truth” yields have not
been used in any way to do the calibration (Lobell et al., 2015).

Meanwhile, many avenues exist for improving SCYM’s accuracy
(Lobell et al., 2015), among which reducing the uncertainty and bias
introduced by crop model simulations is the first thing to consider. In
crop simulations, the seasonal progress of LAI determines the solar
radiation intercepted by the canopy, which drives photosynthesis and
dry matter production, and hence the final grain yield (Huang et al.,
2015). One underpinning assumption of the SCYM approach is that the
crop model can well reproduce the seasonal curve of LAI and yield
corresponding to growing conditions over a realistic range. This as-
sumption, however, is often violated as shown in several crop model
intercomparison studies (Bassu et al., 2014; Battisti et al., 2017; Martre
et al., 2015), because of uncertainties in model structures, initial con-
ditions and input parameters (Asseng et al., 2013). For example, many
of the widely used crop models still employ physiological parameters
and response functions that were derived from calibrations using old
varieties dating back to 1980s, and thus mismatch the growth of con-
temporary varieties (Rotter et al., 2011). This issue also applies to the
APSIM (Agricultural Production Systems Simulator) model (Holzworth
et al., 2014) employed by the earlier version of SCYM.

A second potential issue is that relying on a single crop model, even
a well-calibrated one, might perform worse than using a combination of
independent models. Several recent crop model intercomparison stu-
dies suggested that the ensemble mean of multiple models is often
closer to the field measurement than any single model, even without
model calibration (Bassu et al., 2014; Battisti et al., 2017; Martre et al.,
2015). Thus incorporating simulations from multiple crop models ra-
ther than APSIM alone could potentially be beneficial as well.

A third lesson from the crop modeling literature is that mechanistic
simulations of grain formation and growth within most models often
underperform simpler approaches that predict yield by multiplying si-
mulated biomass by a constant harvest index (HI). For example, the
simpler biomass x HI method exhibited better agreement with NASS
county-level yield statistics for U.S. maize than did yield simulations
from the same models (Jin et al., 2016b). A possible explanation is that
mechanistic methods for grain development need to estimate a sub-
stantial number of parameters beyond those needed for biomass si-
mulation, and that values for these parameters have not been suffi-
ciently calibrated.

The objective of this study is to improve the accuracy of SCYM
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through three scalable ways (i.e. not requiring additional ground-level
measures), with application to US rainfed maize as an example.
Specifically, we investigate improvements by: (i) calibrating APSIM
phenology parameters based on high-frequency Landsat-8 observations;
(ii) using multiple crop model structures to simulate LAI and yield in-
stead of APSIM alone; (iii) using model simulations of biomass rather
than yields to train SCYM (i.e., first simulating biomass and then
multiplying it with a constant HI). In all cases, SCYM was trained using
simulations for sites within Illinois, Indiana, and Iowa (3I states here-
after), and improvements were measured based on agreement with
NASS reported county-level yield data across a broader region com-
prising nine Corn Belt states (Illinois, Indiana, Iowa, Michigan,
Minnesota, Missouri, Ohio, South Dakota and Wisconsin). These states
represent the largest producers of rainfed maize, and together con-
tribute over 65% of total national production (NASS, 2017).

2. Methods

The SCYM approach for yield estimation was documented in details
in our recent work (Lobell et al., 2015; Azzari et al., 2017), and a
schematic overview of this approach along with different avenues we
have tested in this study to improve the existing SCYM was given in
Fig. 1. Here, we mainly focused on describing modifications that were
made in this study to improve the existing SCYM approach.

2.1. Phenology module calibration

2.1.1. Obtaining high-frequency LAI observations from landsat-8

Obtaining high frequency (typically weekly or bi-weekly) time
series of LAI observations over the growing season is a prerequisite for
calibrating the crop phenology module. LAI can be estimated from
various remotely sensed VIs (Nguy-Robertson et al., 2012). Following
Lobell et al. (2015), we estimated LAI from the green chlorophyll ve-
getation index (GCVI) based on an empirical relationship that was de-
rived from a large sample of field measurements (Nguy-Robertson et al.,
2012):

LAI = (GCVI — 0.93)/1.4%9

GCVI is defined as (Gitelson et al., 2003):

Govr = 2R _

Pern
in which pyr and pgry are the near-infrared and green wavelength
reflectance, respectively.

We used Google Earth Engine (GEE) to generate GCVI images from
Landsat 8 Operational Land Imager (OLI) Surface Reflectance (SR)
images acquired over the US Corn Belt in 2014. The GEE team routinely
ingests all SR images in the platform’s servers directly from the United
States Geological Survey (USGS), which handles the satellite’s data
acquisition and preprocessing. The USGS generates SR images using the
LEDAPS algorithm (Masek et al., 2006) to correct for atmospheric ef-
fects and computes a quality band that can be used to remove cloud- or
shadow-contaminated pixels.

Due to the 16-day revisit time of Landsat satellites and frequent
cloud cover, most locations had a limited number of non-contaminated
observations during the growing season (Fig. 2), making it difficult to
resolve a complete phenological curve. To overcome the limited
number of non-contaminated satellite observations, existing studies
often used data fusion techniques to generate synthetic observations of
sufficient temporal resolution at the finer spatial scale by combining the
Landsat data with high temporal frequency yet coarse resolution data
(e.g. MODIS) (Amoroés-Lépez et al., 2013; Gao et al., 2017; Huang et al.,
2015). Despite these examples, data fusion methods require assump-
tions about how Landsat pixels vary with similar neighboring MODIS
pixels (Gao et al., 2017), which can be problematic in agricultural re-
gions where fields are often sown on different dates. Furthermore, to
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