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A B S T R A C T

The multi-plot flux-gradient (FG) technique is well-suited for non-intrusive measurements of agricultural N2O
emissions for individually-treated field-scale plots across growing seasons at high temporal and spatial
resolution. The degree of random error associated with N2O flux measurements is unknown; knowledge of
these errors will increase confidence in the flux measurements and strengthen comparisons of total N2O
emissions between treatments. An error estimation routine was developed to determine the random error (σ)
associated with FG-measured fluxes (σF). The combination of a moving-block bootstrapping technique and the
filtering method of Salesky et al. (2012) estimated the σ values for each variable used in calculating individual
30-min FG-derived fluxes. This error analysis was applied to a year-long dataset where a four-plot FG system
measured N2O fluxes semi-continuously in a soybean field in Southwestern Ontario, Canada, with each plot
having different treatments affecting N2O emissions. Errors of the concentration differences contributed the
largest proportion to the σF values. The individual 30-min σF values did not correlate with the magnitude of the
flux but were positively correlated with turbulence conditions. Random errors of N2O fluxes greater than
45 ng N m−2 s−1 had values representative of 9% of the measured flux, whereas error of fluxes close to zero
frequently exceeded the value of the measured flux. Cumulating the errors over the experiment reduced the
degree of error associated with the cumulated total N2O emissions with an average value of 31.5 g N ha−1,
which represented on average± 5.5% of the total N2O emissions. The proposed framework is applicable to other
scalar fluxes being determined by the flux-gradient method.

1. Introduction

Micrometeorological measurements provide information on the
exchange of greenhouse gases between agricultural land and the
atmosphere (Nemitz et al., 2000; Denmead et al., 2008). Nitrous oxide
(N2O) is a potent greenhouse gas emitted by soils, thus measurements of
N2O fluxes are needed in order to test mitigation practices that reduce
emissions (Reay et al., 2012; Snyder et al., 2014). Any measurement of
N2O emissions will have a degree of uncertainty. Knowledge of the
uncertainty increases confidence in the flux measurements, and is
necessary for comparisons between measurements (Richardson et al.,
2012). Chamber methods are predominantly used for comparisons of
N2O emissions (Rochette et al., 2008; Venterea et al., 2011; Drewer
et al., 2012; Xiaopeng et al., 2013; Burchill et al., 2014) as they are low-
cost and require a small area for flux measurements, making it easier to
implement replicated comparisons between several agricultural treat-
ments. However, chamber measurements do not cover a large enough
area to fully capture the spatial heterogeneity of N2O emissions, and

practical considerations have limited continuous measurements
(Henault et al., 2012), particularly through the winter in cold climates.
Eddy- covariance (EC) measurements provide long-term N2O flux
values that cover significant footprints (Molodovskaya et al., 2011;
Jones et al., 2011), and methods have been developed to estimate the
degree of uncertainty of EC measurements (Lenschow et al., 1994;
Kroon et al., 2010; Mauder et al., 2013). EC measurements are not
practical for plot comparisons as the frequency-response requirements
necessitates multiple analyzers for multi-plot comparisons.

The multi-plot flux gradient (FG) approach provides an alternative
to both chamber and EC methods to measure long-term fluxes for the
purpose of treatment comparisons (Pattey et al., 2006; Wagner-Riddle
et al., 2007; Phillips et al., 2007; Desjardins et al., 2010; Glenn et al.,
2010; Maas et al., 2013; Laubach et al., 2016). This approach allows for
semi-continuous, spatially integrated flux measurements for up to four
different plots under similar soil and climatic conditions. Greater spatial
coverage is achieved with FG measurements than chamber techniques,
and long-term flux measurements can be obtained using one analyzer
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over large plots subjected to differing agricultural practices. The FG
experimental design typically consists of one analyzer to sequentially
measure concentration differences, one plot at a time, over time periods
ranging from several months to several growing seasons. Information
on the turbulent conditions is used in combination with the measured
gradient to calculate the flux. Fluxes are cumulated over the measure-
ment period to give total emissions and are then compared. Numerous
studies have applied this methodology to examine the effects of
management techniques on total emissions of the species of interest
(Glenn et al., 2012; McMillan et al., 2014; Abalos et al., 2016) or the
effects of management on the dynamics and drivers of trace gas fluxes
(Furon et al., 2008; Kariyapperuma et al., 2012; Risk et al., 2014).

Similar to EC measurements, uncertainty quantification for FG
measurements is challenging as treatment replication is typically
limited. Uncertainty is therefore determined by evaluating several
types of measurement errors. Measurement errors are generally classi-
fied as being either random or systematic. Systematic errors, also
known as bias errors, shift the flux values in one direction or another,
and can arise for FG measurements from inadequate instrument
calibration, instrument offsets, undersampling of low frequency con-
centration signals (Lenschow et al., 1994), or inadequate parametriza-
tion of the FG equations (Loubet et al., 2013). Random errors reduce
the precision of flux measurements and cannot be corrected for
(Richardson et al., 2012). Sources of random errors are instrument
noise (Blanc, 1983; Laubach and Kelliher, 2004; Mukherjee et al.,
2014), heterogeneity in the flux footprint (Laville et al., 1997), and
from the stochastic nature of turbulence (Mauder et al., 2013). Random
error from the stochasticity of turbulence is of greater influence to the
total uncertainty than sensor noise (Salesky and Chamecki, 2012;
Mauder et al., 2013; Langford et al., 2015), and has not been evaluated
for FG measurements.

The definition of random error given by Lumley and Panofsky
(1964) is the variation of the sample mean, as measured by time-
averaging using single-point instrumentation, from the true ensemble
mean. This quantifies the degree of random error from the stochasticity
of turbulence, and is the definition of random error used throughout
this study. A consequence of measuring fluxes over finite time intervals
in turbulent, variable conditions is the inability of flux measurements to
converge to the true ensemble value (Lenschow et al., 1994; Mahrt,
1998; Laville et al., 1999; Salesky et al., 2012). The definition from
Lumley and Panofsky (1964) is based on the principle that the error
variance of an average from the ensemble mean (σf

2) approaches zero
with increasing averaging time. Relating the properties of the variance
with the autocorrelation function gives:
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where f′2 represents the ensemble variance, ρ is the autocorrelation
function, and T the time period over which the measurements were
taken. Integration of the autocorrelation function gives the integral
time scale (ℑ), such that the random error can be expressed as:
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In practice, f ′2 is replaced by the sample variance. Increased ℑ within
the sampling interval is analogous to a decrease in the number of
independent samples, thus increasing σf

2 , which is akin to the impact
of reducing the number of replicates in a standard replicated experi-
mental design.

Several of the methods for estimating random error, expressed as
the standard error σ σ n= ( )f f

2 −1 0.5, where n is the number of independent
samples, are based on the Lumley and Panofsky (1964) definition and
thus rely on the value of the integral time scale (Lenschow et al., 1994;
Mann and Lenschow, 1994; Finkelstein and Sims, 2001). Random error
calculations for EC measurements typically use variations on Eq. (2)
(Rannik et al., 2004; Peltola et al., 2014; Litt et al., 2015). The value of

ℑ varies depending on the estimation technique, as ℑ can change with
record length (Theunissen et al., 2008) and choices for the maximum
lag time and the upper bound of the integration of ρ (Dias et al., 2004).
Methods exist for σf estimations that are independent of ℑ to avoid this
uncertainty. Bootstrapping methods have estimated random errors for
turbulent quantities in flumes (Garcia et al., 2006; Theunissen et al.,
2008; Amir et al., 2014) and in the atmospheric surface layer (Davies
et al., 2003; Dias et al., 2004; Bernardes and Dias, 2010). Salesky and
Chamecki (2012) estimated random errors of the turbulence statistics
and stability parameters used in Monin–Obukhov similarity theory with
the filtering method of Salesky et al. (2012) to avoid the use of integral
scales. Bootstrapping or filtering methods are an intuitive alternative to
Eq. (2); increased variability between means of either re-sampled or
spatially-filtered sampled datasets indicates divergence from the en-
semble mean. Salesky and Chamecki (2012) demonstrated the compar-
ability between the filtering and bootstrapping methods and Eq. (2).
These methods have not been applied to estimate σf of flux-gradient
measurements.

The degree of non-convergence of the sample mean to the true
ensemble mean has not been quantified for FG measurements.
Guidelines and definitions for assessing random error of single-point
EC measurements have been well-developed (Hollinger and
Richardson, 2005; Billesbach, 2011; Richardson et al., 2012; Mauder
et al., 2013). The quantification of random error for FG measurements
differs from EC measurements in that the FG calculation requires
measuring several different variables, all of which have differing
degrees of random error. These individual σf values are then propagated
through the FG calculation. Several studies have used error propagation
to assess uncertainty of FG measurements, but with varying definitions
of random error. Aspects related to random error, such as errors from
limitations on instruments to resolve gradients (Laubach and Kelliher,
2004; Walker et al., 2006; McMillan et al., 2014), errors associated with
instrument noise (Laville et al., 1997; Glenn et al., 2012; Mukherjee
et al., 2014), or Monte Carlo simulations to assess the impact of the
range of error on the uncertainty of the flux measurements (Mukherjee
et al., 2014) all give information on various aspects of FG uncertainty.
An assessment of the random error of all variables involved in FG flux
calculations is needed to evaluate differences in N2O emissions in multi-
plot FG systems. Additionally, the contributions of each variable in the
FG equation to the total random error of flux measurements is
unknown.

This study quantified the degree of random error of individual 30-
min flux measurements for a multi-plot FG experiment measuring fluxes
of N2O over the course of a year. A routine was developed to quantify
the random error of the variables used to calculate FG fluxes using
either the filtering method of Salesky and Chamecki (2012) or a
bootstrapping algorithm. These methods used the high-frequency (10
or 20 Hz) data of each variable in the FG flux equation. Calculation of
these errors allowed for (1) identification of the properties of random
errors of the FG variables and their relationships with atmospheric
conditions; (2) propagation of these errors through the FG equations to
calculate the random error of the flux measurements; (3) characteriza-
tion of the source of random error of the fluxes; and (4) evaluation of
the random error effect on comparisons of N2O emission from four plots
by cumulating the random errors throughout the measurement period.

2. Methods

2.1. Field site

Data from one year of a multi-plot FG measurement campaign
provided the information to analyze the random errors. Measurements
of N2O fluxes were conducted at the Elora Research Station (43∘38′N
80∘ 25′W, 376 m elevation) in Elora, Ontario, Canada, from June 2009
to June 2011. The current study uses data from 2010. A companion
paper (Congreves et al., 2016) presents the evaluation of the treatment
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