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a  b  s  t  r  a  c  t

The  concentration  change  in  a closed  chamber  derived  from  Fick’s  law  for a steady  flux  leads  to a differ-
ential  equation  which  describes  an  exponential  curve  of  limited  growth.  Here  we  introduce  and  compare
an  alternative  parameterization  with  those  commonly  used  in  the  chamber  flux  community  when  inves-
tigating  soil-atmosphere  exchange  of  N2O,  CH4, or CO2 using  classical  gas  chromatography  systems,
infrared  gas  analyzers,  or novel  laser  absorption  spectrometers.  This  new  parameterization  has  the  advan-
tages  that  the  parameters  are  mathematically  less  dependent  leading  to a  more  stable  regression  and  that
all parameters  are  physically  meaningful  with  one  of  them  being  the  main  quantity  of interest,  i.e. the
initial  flux  at  chamber  closure.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Investigating the exchange of trace gases such as N2O, CH4, and
CO2 between soil and atmosphere has been in the focus of climato-
logical and biogeochemical research for decades. Closed chamber
measurements are the preferred method when studying the effects
of different land use types or soil treatments on exchange fluxes
over a variety of ecosystems at plot scale. While air samples of N2O
and CH4 were commonly analyzed by lab- or field-deployed gas
chromatography systems (e.g. Brümmer et al., 2009; Castaldi et al.,
2010; Christensen, 1983; Dannenmann et al., 2006; Jassal et al.,
2011; Livesley et al., 2011; Lohila et al., 2010; Pihlatie et al., 2013;
Rosenkranz, 2006), more recent studies demonstrate the applica-
bility of laser absorption spectrometers for all kinds of trace gases
including N2O, CH4, and CO2 (e.g. Brümmer et al., 2017; Cowan
et al., 2014; Savage et al., 2014; Shurpali et al., 2016) with high
temporal resolution.

There are different approaches to determine the soil-
atmosphere flux from the change in gas concentration inside a
closed chamber. While linear regression has been applied in many
studies (e.g. Alm et al., 1997; Drösler, 2005; Laine et al., 2006),
others have demonstrated the need for non-linear models (e.g.
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Forbrich et al., 2010; Hutchinson and Mosier, 1981; Livingston
et al., 2006; Pedersen et al., 2010; Pihlatie et al., 2013). Apply-
ing molecular diffusion theory for fluxes from the soil into the
chamber with the simplification of a constant source concentration
leads to a differential equation describing an exponential curve of
limited growth (e.g. Hutchinson and Mosier, 1981; Nakano et al.,
2004). More advanced non-linear models also account for chamber
induced concentration changes in the soil (e.g. Conen and Smith,
2000; Livingston et al., 2005, 2006), altered atmospheric turbulence
(Lai et al., 2012), or for chamber leakages (Kutzbach et al., 2007).

In this paper, we  explore the differential equation for limited
growth in more detail. This differential equation for the satu-
rating gas concentration inside a closed chamber has multiple
solutions, i.e. parameterizations. For the choice of the parameteri-
zation, it is usually advisable to have parameters that are physically
meaningful and as independent from each other as possible. Here,
we compare three parameter sets that have already been widely
applied in environmental science with a new alternative set sug-
gested in this study. This new parameterization has been used
before in other fields of ecophysiology, for example for fitting light
response curves (Falge et al., 2001; Moffat, 2012). A step-by-step
derivation of all four parameterizations discloses differences in
parameter meanings. To investigate the dependencies among each
other, the method of bootstrapping will be applied to datasets of
N2O, CH4, and CO2.
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Table  1
List of variables.

Variable Unit Description

t s Time
t0 s Time of initial chamber closure
t∞ s Time at infinity
F(t) g m−2 s−1 Flux (gas exchange rate) at time t
F0 g m−2 s−1 Initial flux
C(t) g m−3 Gas concentration inside chamber at time t
CS(t) g m−3 Gas concentration at soil surface at time t
Cd g m−3 Constant source concentration
C0 g m−3 Initial gas concentration
C∞ g m−3 Gas concentration at infinite time
C� g m−3 Gas concentration range (C� = C∞ − Co)
z  m Vertical length
zd m (Unknown) depth with constantCd

h m Effective chamber height
D  m2 s−1 Gas diffusivity in the soil
A  g m−3 Integration constant
k s−1 Exponential decay rate

2. Physical background

The gas exchange rate, flux F(t), inside a closed-chamber is:

F(t) = h
∂C(t)

∂t
(1)

where h is the effective chamber height and C(t) the gas concen-
tration at time t inside the chamber. (All variables including their
units are listed in Table 1).

The diffusion from the soil into the chamber can be described
by Fick’s law for the vertical gradient of the gas concentration:

F = −D
∂C

∂z
(2)

where D is the gas diffusivity in the soil and z the vertical length.
Considering a soil column with a gas concentration CS(t) at the soil
surface and with the simplification of a constant source concentra-
tion Cd at some unknown depth zd, we can derive F(t) for a steady
flux into the chamber:

F(t) = −D
CS(t) − Cd

zd
(3)

Combining Eqs. (1) and (3) and assuming that the gas concen-
tration inside the chamber C(t) is equal to the surface concentration
CS(t) leads to:

h
∂C(t)

∂t
= −D

C(t) − Cd

zd
(4)

Rearranging Eq. (4) yields the following differential equation
with k = D

hzd
:

∂C(t)
C(t) − Cd

= − D

hzd
∂t = −k∂t (5)

This differential equation describes the change of the gas con-
centration inside a closed chamber.

3. Derivation of the parameterizations

Integrating the differential Eq. (5) yields an exponential equa-
tion of limited growth:

C(t) − Cd = A · e−kt (6)

where A is an integration constant and k the exponential decay rate.
Hence, the solution of the differential equation Eq. (5) is a satu-

rating exponential curve:

C(t) = A · e−kt + Cd (7)
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Fig. 1. Sketch of the exponential curve for saturating gas concentrations (red line).
For a description of the variables see Table 1.

with three parameters A, Cd, and k which can be parameterized
in different ways. In the following, all four presented parameter-
izations will be derived explicitly, with an overview provided in
Table 2.

The parameters A, k, and Cd of Eq. (7) can be defined using the
three boundary conditions (see also Fig. 1). The 1st boundary con-
dition is the initial concentration C0 at chamber closure t=0:

C(t = 0) = C0 = A + Cd (8)

and 2nd boundary condition the concentration C∞ at infinite
time:

C(t = ∞)  = C∞ = Cd (9)

Applying Fick’s law, leads to the 3rd boundary condition, the
initial flux F0 at t = 0:

∂C(t)
∂t

∣∣∣∣
t=0

= F0

h
(10)

which is the quantity of interest.
Replacing the parameters in Eq. (7) with boundary condition 1

(Eq. (8)) and 2 (Eq. (9)), yields parameterization I:

C(t) = C∞ + (C0 − C∞) · e−kt (11)

Additionally substituting the range of the concentration as C� =
C∞ − C0 leads to parameterization II:

C(t) = C�(1 − e−kt) + C0 (12)

Applying the 3rd boundary condition (Eq. (10)) to parameteri-
zation I (Eq. (11))

∂C(t)
∂t

∣∣∣∣
t=0

= −(C0 − C∞)k = F0

h
(13)

and substituting the rearranged Eq. (13) (C0 − C∞) = − F0
hk in Eq.

(11) yields parameterization III:

C(t) = C∞ + F0

−hk
· e−kt (14)

Applying the 3rd boundary condition (Eq. (10)) to parameteri-
zation II (Eq. (12)):

∂C(t)
∂t

∣∣∣∣
t=0

= C�k = F0

h
(15),

solving Eq. (15) for the decay rate k = F0
hC�

, and substituting this

in Eq. (12) yields the new alternative parameterization IV:

C(t) = C�(1 − e− F0
hC� t) + C0 (16)
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