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a  b  s  t  r  a  c  t

Large-scale  crop  simulations  with  process-based  models  rely  on  meteorological  input  data  of  coarse
spatial  resolution.  We  assess  how  spatial  aggregation  of  meteorological  data  to coarser  resolutions  affects
the data’s  temporal  properties.  This  is  largely  unknown  as is  the  impact  which  this  aggregation  effect
(AE)  has  on  simulations  which  use such  aggregated  data  as  input.  In simulations  of  crop  yield  AE may
exceed  10%  in  single  years.  We  hypothesize  that  AE  should  be analysed  with  regard  to  both  temporal  and
spatial input  data  properties.  For  this  purpose,  we analysed  changes  in  temporal  multifractal  properties  of
meteorological  variables  due  to spatial  averaging  from  1 to 100  km  resolution.  Results  show  that  temporal
properties  of  the time  series  were  affected  depending  on the  meteorological  variable.  We  argue  that  the
magnitude  of  this  effect  depends  on  local  orography  and  climate.  Similar  impact  of  spatial  aggregation
on  temporal  properties  can  therefore  be  expected  in regions  of  comparable  orography  and  climate.  These
changes  in  multifractal  properties  potentially  affect  results  of  continuous  dynamic  simulations.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Meteorological time series are essential for a wide range of
research areas. At the same time, research related to the environ-
ment often involves modelling. In order to extend our knowledge
to situations for which measurements are scarce, not efficient or
not available (e.g. large scales, future), process-based models are
increasingly applied. For instance, process-based crop models are
useful tools to assess crop production from the field (e.g. Nendel
et al., 2013) to the global (e.g. Rosenzweig et al., 2014) scale. Such
simulation requires input data at the target resolution, which is
often not available. Resolutions may  then be sampled or model
input data may  be derived by spatial (dis-)-aggregation from other
resolutions (Fig. 1), (Ewert et al., 2011, 2015). For instance, weather
input is not measured at the regional or global scale, but rather
aggregated from higher resolution.

Large-scale simulations often require input data of low resolu-
tion and only few data types can be measured or derived directly
at these scales, e.g. via remote sensing. Therefore meteorological
time series for large-scale simulations are usually either simulated
with the help of climate models or are spatially aggregated from
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measured time series at high resolution. The use of climate models
is common in weather forecasting, climate projections and study-
ing aspects of climate change (e.g. Tao et al., 2016) along a range
of aggregation and scaling (Fischer et al., 2013; Gong et al., 2003;
Ning et al., 2015) as well as bias correction approaches (Piani et al.,
2010; Hoffmann and Rath, 2012). However, spatial meteorologi-
cal data aggregation in environmental simulation studies is often
achieved directly via spatial averaging (Janssen et al., 2009; Zhao
et al., 2013). Still, most models using meteorological time series
as input are developed and calibrated at the scale at which model
driving variables are obtained. Crop models for instance are usu-
ally developed and calibrated at the field scale (Van Ittersum et al.,
2003; Hansen et al., 2006).

Complex dynamical process-based models are typically com-
posed of non-linear functions. Using such models of non-linear
functions with linearly averaged input data at larger scales may
therefore lead to biased simulations (Fig. 2). This is the so-called
nonlinear aggregation error (Cale et al., 1983) or aggregation effect
AE (Hoffmann et al., 2015, 2016b; Zhao et al., 2015a). The AE of
meteorological time series has been investigated by several publi-
cations, e.g. with regard to crop (Angulo et al., 2013; De Wit  et al.,
2005; Easterling et al., 1998; Folberth et al., 2012; Hoffmann et al.,
2015, 2016b; Van Bussel et al., 2011a,b; Zhao et al., 2015a,b) or
environmental models (Ershadi et al., 2013; Pierce and Running,
1995). For instance the AE of 30-year regional yield due to the
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Fig. 1. Illustration of spatial (dis-)aggregation via averaging. Gridded values at high
resolution (a) are averaged to a coarser resolution (b). Disaggregation allocates val-
ues of a coarser resolution (b) to a higher resolution (c).

Fig. 2. Illustration of aggregation effect in dynamic simulations due to spatial aver-
aging of input data. In the example blocks of four cells are averaged. As a result the
spatial mean of the simulation output, exemplified by the function y = x2, decreases
from 5.5 to 4.

spatial aggregation of meteorological time series was  reported by
Hoffmann et al. (2015) and Zhao et al. (2015a). AE of crop yields
up to 100 km resolution as compared to yields at 1 km resolution
were in the range of ≤3.5% (bias) and ≤4.5% (root mean square
deviation). These values are averages and may  differ considerably
for single grid cells, years or models. Due to the complex interac-
tion of climate with different input data types and model structure,
aggregation effects have been merely described in the past. Zhao
et al. (2015b) made a first step in using terrain elevation as prox-
ies for an ex ante assessment of average aggregation effects for
one model. However, a general approach for estimating spatial AE
across models, data types and regions has not been validated so far.

In contrast to spatial AE, temporal AE are also known to
affect results of dynamic simulations (Van Bussel et al., 2011a;
Weihermüller et al., 2011). While temporal aggregation is not the
subject of this study, temporal and spatial aggregation must not be
confused. While spatial aggregation can be conducted at any tem-
poral resolution (e.g. spatially averaging daily time series at each
day), temporal aggregation can be conducted at any spatial reso-
lution (e.g. averaging daily values to monthly means for each grid
cell). Hence, this process of averaging is similar for both spatial and
temporal aggregation. Amplitudes may  smooth and extreme val-
ues decrease with aggregation as they are averaged out (Hoffmann
et al., 2015). For a given situation, it is therefore possible to define
impact response surfaces of iso-lines of AE, showing the trade-off
between temporal and spatial aggregation.

From the above, spatial aggregation is expected to impact on the
temporal properties of meteorological time series. The spatiotem-
poral connection in the properties of meteorological time series
has been considered e.g. in downscaling precipitation (Lovejoy
et al., 2012; Pathirana and Herath, 2002). However, it is unknown

Fig. 3. Illustration of accumulated aggregation errors for one given process in a
dynamic simulation. U: state of variable; t: time; �t: time step; X: time series of
meteorological variable; �: vector of system component properties (e.g. parame-
ters); g: mathematical function describing the relation between state variables,
parameters and meteorological variables. AE1: instantaneous aggregation error
made at given time step with meteorological data X(t); AE2: cumulative aggrega-
tion error resulting from aggregation errors at previous time steps. Modified from
Wallach et al. (2014).

to which extent spatial aggregation of meteorological time series
affect the temporal properties with regard to multifractal prop-
erties. The latter are in turn expected to have an impact on the
simulation results of dynamic, process-based models, as described
in Section 2. The aim of the present work is therefore to show in
a first step, how spatial aggregation of meteorological time series
modifies the temporal properties with regard to multifractal prop-
erties.

Spatial data aggregation errors partially depend on the orogra-
phy and climate of the region (Hoffmann et al., 2015). Therefore we
test the effect of spatial aggregation of meteorological time series
on their temporal properties in a select region. While this does not
allow quantifiable estimate of the effect for other regions, it can
be assumed that effects are comparable in regions of similar cli-
mate and orography and lower/stronger in regions of less/more
pronounced orography and temporal variation. Specifically, this
approach allows i) to verify whether and how spatial aggregation
affects multifractal properties in general and ii) to put results into
the context of the given region.

2. Conceptual basis for estimating the aggregation error

Dynamical process-based models solve differential equations at
different time steps. The spatial AE described above does therefore
occur at each time step for a given model variable, e.g. biomass.
For that given time step, the AE in a calculated model rate might
be comparable to the AE from temporal aggregation. However, the
daily AE in a given model rate continuously contributes to the AE
in final model output. Final model outputs (e.g. crop yields) are
therefore prone to the accumulated aggregation error in the input
data (Fig. 3). Neglecting specific feedbacks, e.g. of AE early in the
season on the simulation later in the season, a simplified concept
can be drafted. The AE at any time can therefore be viewed as the
sum of an instantaneous aggregation AE1 error at a given time step
t and the cumulative aggregation error AE2 as the sum of aggrega-
tion errors of previous time steps (Fig. 3). Moreover, the rate g of
change of the value of a state variable U(t) to next time step U(t + 1)
may  depend on both AE1 and AE2. This relation also describes the
impact of aggregation errors from single events and from persisting
influences. For instance, a large AE occurring only at one time step
(AE1 > 0; AE2 > 0), e.g. from a large local meteorological event, will
in the following persist only through AE2 (AE1 = 0; AE2 > 0). In con-
trast a persisting AE, e.g. from soil aggregation, will continuously
add to AE2 (AE1 > 0; AE2 > 0).
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